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Abstract—The Tacotron performs well in English speech syn-
thesis and successfully aligns two arbitrary sequences from
different domain in an automatic way. However, to introduce
Tacotron into Mandarin Chinese Text-to-Speech (TTS), a prosody
system is needed for generating more natural speech. This paper
proposes a practical method to involve the prosodic annotation
into Tacotron training for Mandarin Chinese synthesis system. A
prosody model predicting the prosodic boundaries from the given
text serves as the front-end system in our approach, followed by a
Tacotron synthesis system trained with well-labeled TTS database
containing the prosodic annotations. Under subjective evaluation
in terms of the prosody, results show that the synthesis system
performs better by adding the prosodic system as the front-end
system for Tacotron.

I. INTRODUCTION

The conversion from normal language text to speech is
called speech synthesis, which also known as text-to-speech
(TTS). The traditional concatenation synthesis simply concate-
nating pieces of pre-recorded speech units was the state-of-the-
art for many years [1], [2]. The speech generated under this
approach is considered intelligibility. However, limited to the
natural variations in speech and inflexible automatic technique,
the output speech could have audible glitches. Another primary
technology for TTS is Statistical Parametric Speech Synthesis
(SPSS) [3], [4], [5], [6], [7], [8], [9]. Unlike the concatenation
synthesis, the SPSS no longer needs a large database for
speech units searching, and have a higher speed in synthesizing
a speech. The Merlin toolkit is developed using Deep Neural
Network for acoustic modeling method in SPSS [10], [11].
We need a vocoder as the back-end synthesizer converting
the estimated parameters into speech signals for SPSS [12],
[13], [14]. In recent years, the TTS approaches using end-to-
end neural network architecture has dominated the field [15],
[16], [17]. The Tacotron [15] sequence-to-sequence model suc-
cessfully aligns two arbitrary sequences (one is the character
sequence, the other is the acoustic representation sequence )
in different length, making it possible to compute the speech
output directly from graphemes or phonemes. Followed by the
Griffin-Lim algorithm [18] or WaveNet [19], Tacotron is able
to yield natural speech that approaches the real human speech.

The characteristics of Mandarin Chinese, however, chal-
lenge the TTS systems in several ways comparing to English.
1) The text in Mandarin Chinese do not have explicit separator
between words; 2) The characters in a given text need to be
converted into Latin alphabet representation which is more

suitable for TTS system; 3) The homograph problem and off-
beating problem is common in Mandarin Chinese. The prosody
in Mandarin Chinese mostly refers to the duration of pauses
between words or sentences. We lose the prosody information,
which can obtain from the context, as we convert the Chinese
character into phonemes or Latin alphabet in the Chinese TTS
system. Thus the synthetic speech sounds monotonous and
less human-like comparing to the English TTS system. While
there are approaches under SPSS using Hidden Markov Model
(HMM) [20] or extracting the prosody parameters as input to
address the prosody problem, two approaches regarding the
English end-to-end TTS framework are proposed [21], [22].
However, the two approaches address the prosody problem
in a guiding manner that needs a reference utterance or style
token as reference code.

This paper proposes a practical method using prosodic
annotation to retain the prosody information for end-to-end
Mandarin Chinese TTS. Specifically, in the training phase, a
prosody labeling network and a Tacotron model are trained.
We adopt a sequence-to-sequence neural network for the
prosody labeling network to predict the prosodic boundaries
for a given text including pauses between words, pauses
between phrases and pauses between sentences. The Tacotron
is trained with a well-labeled database containing prosodic
annotations. In the synthesis phase, a given text would convert
to a phoneme sequence with prosodic annotation after feeding
to the prosody labeling network. Then we use the prosody-
related Tacotron model to synthesize output speech regarding
the phoneme sequence. Besides, the subjective evaluation is
performed on our proposed method comparing to the baseline
Tacotron Mandarin Chinese TTS system. Results show that
our proposed method is able to synthesize rhythmed speech
with natural prosody.

The rest of this paper is organized as follows. Section
2 briefly describes the Tacotron baseline system. Section 3
presents our extended TTS system with prosodic annotation.
The experimental details and results are discussed in Section
4. Section 5 presents the conclusions and future work.

II. BASELINE TTS SYSTEM

The baseline system consists of two components, (1) a
recurrent sequence-to-sequence feature prediction network
named Tacotron with an attention module which predicts
a sequence of linear spectrogram frames from a phoneme
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sequence, and (2) the Griffin-Lim algorithm which generates
time-domain waveform samples conditioned on the predicted
linear spectrogram frames. In the following subsection, we will
focus on the first component.

A. Text Processing for Mandarin Chinese

We could not intuitively obtain the pronunciation of the Chi-
neses text in written form unless we convert it into phoneme
sequences. The phoneme sequence is more suitable and stable
for a Mandarin Chinese TTS system, because the mapping
and alignment between the phoneme sequence and acoustic
feature sequence are more reliable. Therefore, we employ the
phoneme sequence as the input of Tacotron. The Chinese
phoneme, which is also called pinyin, can be divided into three
parts, consonant, vowel and tone respectively. For example,
the phoneme ”shang1” can be separated into “sh”, “ang” and
“1”; the “sh” is the consonant in “shang1”, the “ang” is
the vowel and “1” denotes the tone. Usually, we need blank
spaces to perform disambiguation between characters when
converting the text into the phoneme sequence. For example,
if the utterance is “今天天气不错” (It is a nice weather today),
the corresponding phoneme sequence for Tacotron input would
be “jin1 tian1 tian1 qi4 bu2 cuo4”.

B. Acoustic Feature Representation

In this paper, we choose a high-level acoustic represen-
tation, the linear-frequency spectrograms, to bridge the two
components. Short Time Fourier Transform [23] (STFT) is
used to analyze the time-domain audio signal in terms of
the frequency domain. High-level representation can embody
more acoustic information, but it is much harder to imitate
for networks. Hence it is appropriate to introduce a low-
level acoustic representation as a temporary output. A mel-
frequency spectrogram is considered as a low-level acoustic
representation of the short-term power spectrum of a sound.
Firstly the mel-frequency spectrum is obtained by applying
a non-linear mel scale transform on the frequency axis of
STFT. Then a particular number of mel-filters are designed
to summarize the frequency content according to the human
auditory system. The phrase information is discarded during
acoustic feature representation extraction and is estimated
using the Griffin-Lim algorithm when generating the audio
samples.

C. Model Architecture

Tacotron is designed as an attention-based sequence-to-
sequence model involving three modules, which are the en-
coder, decoder and attention mechanism. Figure 1 shows the
model architecture of Tacotron.

1) Encoder: The encoder is composed of several con-
volutional layers followed by bi-directional long short-term
memory (BLSTM) [24] layers to obtain the interactive and
long-term correlations between elements in the sequence.
This structure produces hidden representation from character
embedding sequence. The hidden representation then feed
into the attention mechanism to get a fix-length context

Fig. 1. Architecture of Tacotron

vector. The input phonemes are represented using a learned
512-dimensional character embedding. Some necessary batch-
normalization and dropout layers are also involved to prevent
it from over-fitting.

2) Attention mechanism: The attention mechanism used in
encoder-decoder architecture is believed to allow the decoder
to refer to different parts of the source sequence at each
decoder step. It has recently been a trend in deep learning
including Speech Recognition [25], Machine Translation [26],
etc. However, unlike machine translation, speech synthesis is
a streamlining task and the attention is undoubtedly moving
forward as time step increases. In this case, a location-sensitive
attention [27], which extends the additive attention mechanism
[28] to employ cumulative attention weights from previous
decoder time step as an additional feature, is applied to the
output of the encoder. This mechanism enables the model to
move forward consistently through the input sequence and
mitigates potential failure cases where some subsequences are
repeated or ignored by the decoder. Besides, the attention
mechanism summarizes the full sequence from the encoder
for the decoder to predict the acoustic feature representation
at each decoder time step.

3) Decoder: The decoder is an autoregressive recurrent
neural network. At each time step, it predicts a mel-
spectrogram frame given the previous output and a context
vector generated from the attention mechanism. A pre-net
layer consisting of two fully connected layers is applied to the
previous output, followed by a stack of uni-directional LSTM
to maintain the long-term dependencies. The concatenation
of context vector and LSTM output is then passed through
two separately projection layers to get the mel-spectrogram
prediction and the stop token prediction respectively. A post-
net consisting of several convolution layers is applied to the
mel-spectrogram prediction to perform residual reconstruc-
tion. After feeding the residual mel-spectrogram prediction
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Fig. 2. Architecture of prosody model

into a complicated network named CBHG, which consists
of convolution layers, fully connected layers and GRU [29]
recurrent layers, a projection layer is used to generate the
linear-spectrogram prediction.

III. EXTENDED TTS SYSTEM WITH PROSODY

The Tacotron model can produce a sequence of linear-
spectrogram predictions based on the given phoneme se-
quence. However, when it is adopted in Mandarin Chinese
TTS, Tacotron could not learn any prosody information from
the input unless the prosodic annotation is provided. For exam-
ple, given that “/” represents a short pause within a Mandarin
utterance, for an identical sentence “请明天下午到我办公
室” (please come to my office tomorrow afternoon), there are
plenty ways in reading when it is converted into phoneme
sequence “qing3 ming2 tian1 xia4 wu3 dao4 wo3 ban4 gong1
shi4”, such as “qing3 ming2 tian1 xia4 wu3 / dao4 wo3 ban4
gong1 shi4”, “qing3 ming2 tian1 / xia4 wu3 dao4 wo3 ban4
/ gong1 shi4” and etc. Because the phoneme “gong1 shi4”
in the later one is the same as another word “公式” (means
formula). The former one is more natural compared to the later
one because it would not cause ambiguities for comprehension.
Therefore, we adopt a prosody labeling system to provide the
prosody annotation before the text-to-phoneme procedure.

The prosodic annotation contains three kinds of pause:
• PW, a short pause between words where the former word

is pronounced with stress.
• PP, a medium pause between words or phrases where the

tone of the former phrase is pronounced like the end of
an utterance but actually not.

• IP, the long pause between sentence.
We are not able to distinguish the difference between these

three types correctly since the pauses are too short, usually
less than 0.2 second. But we can sense the pause and transition
in rhythm within a sentence. These prosodic boundaries help
disambiguate the comprehension of a sentence, which is
significant in the Mandarin Chinese TTS system.

A. Prosody Model

We adopt a prosody neural network architecture to predict
prosodic boundaries for a given text. We believe the prosodic
annotation is learnable from text since it is determined by the
context and word composition of a sentence.

1) Input: Each Chinese character is converted to a unique
integer when applying the neural network approaches. The
texts in a batch are padding to the max length of all the texts
with a symbol that does not appear in the Chinese text, which
makes the data more suitable to feed in the neural network
without affecting the performance.

2) Prosodic annotation symbol: In our method, we use
symbol “@” for PW annotation, “%” for PP annotation and
“&” for IP annotation respectively. For a given sentence “今
天天气不错” (Today’s weather is good), it would become “今
天@天气%不错&” after the prosodic annotation prediction.

3) Architecture: The main architecture is shown in Figure
2. We use the prosody prediction approach illustrated in [30]
for prosodic annotation labeling. Different to the original
method, we use a pre-trained word-to-vector lookup table [31]
for text embedding instead of a learnable embedding layer. The
word-to-vector table is more suitable in this case regarding
its coverage, freshness and accuracy on representing Chinese
words.

The prosody model could be divided into three modules
according to different annotations. Each module is a binary
classification network predicting if a prosodic annotation needs
to appear in each time step. For each time step, there is only
one prosodic annotation could appear. Therefore the prosody
labeling priority follows IP > PP > PW. The input of the
annotation prediction module with higher priority is correlated
with the module with lower priority through concatenation.

To obtain the long-term dependencies and hidden-level
characteristic feature of the Chinese characters in a sentence,
we apply a bi-directional LSTM layer as the encoder for
every annotation module. Then the encoder output is passed
through a decoder containing a single uni-directional LSTM
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layer. Finally, a linear projection layer is adopted for binary
classification.

B. Tacotron with Prosodic Annotation

To introduce the prosody in Tacotron, we train the Tacotron
model with a well-labeled dataset with prosodic annotation. In
the synthesis phase, we label a given sentence with prosodic
annotation, then convert the text into a phoneme sequence
for the Tacotron model to predict the relevant spectrum. This
model can imitate the prosodic pause inside the synthetic
speech signal according to the input phoneme sequence with
prosodic annotations.

IV. EXPERIMENTS

A. Database

We train our systems on the BZSYP database [32] consist-
ing of 10,000 audio samples. The speaker is a Chinese female
in age 20s. The sample rate of the audio is 48 kHz. All the
texts, phoneme sequence and prosodic boundaries are well-
labeled. We downsample the audio to 16 kHz for training.
The duration of each audio is around 4-6 seconds and sum
up to 10.38 hours. The phoneme sequence and texts have
carefully been rectified with less than 2% and 0.2% error rate
as described authoritatively. 5% of the BZSYP database is set
aside for testing. We use the Pypinyin [33] Python package
to convert the Mandarin Chinese characters into phoneme
sequence.

B. Tacotron Model Setup

We use librosa [34] Python package to perform Short
Time Fourier Transform [23] (STFT) to extract the acoustic
parameter from audio. We extract the normalized energy of
STFT as acoustic features which our model aims to predict.
The number of mel-spectrogram channels is set to 80 while
the dimensionality of the linear channels is 1024. Since our
model is trained with audio samples under 16 kHz, the window
size and hop size is set to 1024 and 256 respectively. The
minimum frequency in extracting acoustic feature is 95 to
help taking off the noise. All other network hyper-parameters
remain unchanged to the default value. Two Tacotron models
are trained in our work. The first one is trained without
prosody annotations, while the other system is trained with
prosody annotations and use the phoneme sequence converted
from the text that obtains prosodic labeling from the prosody
model.

TABLE I
ACCURACY FOR THREE TYPES OF PROSODIC BOUNDARIES

Prosody type PW PP IP
Accuarcy 92.16% 93.27% 99.18%

C. Prosody Model Setup

We pad all the sentence to a fixed length 59, same as the
decoder time steps size. The embedding dimension of a word
is 200. The number of the hidden unit is 128 in LSTM layers

for both the encoder and decoder. The dropout rate is 0.5 and
the regulation factor is 0.8. We train our model with Adam
optimizer with an initial learning rate of 0.01 and 0.85 decay
rate. The prosody model is trained with the text data from
BZSYP database.

Fig. 3. Preference between two systems

D. Results

As shown in table I. The accuracy of three types of annota-
tion is high enough for prosody prediction. As for subjective
evaluation, we asked 10 native Chinese speakers to choose
their preference on speech utterances that synthesized from
the baseline Tacotron model and the method we proposed
according to the prosody and naturalness. Each speaker needs
to make their choice on 15 different sentences that randomly
selected from the testing set. Results in Figure 3 show that our
proposed method outperforms the baseline with 84 choices on
the Tacotron with prosodic annotation while 23 on the baseline
system.

V. CONCLUSIONS AND FUTURE WORK

This paper provides a method to introduce the prosodic
annotation into Tacotron model for generating rhythmed and
natural Chinese speech. To address the ambiguity of compre-
hension in Mandarin Chinese TTS system, a prosody model
is trained to predict prosodic boundaries between characters
for given text. The subjective evaluation conducted on native
speaker shows that our proposed method outperforms the
baseline system trained without prosodic annotation. In the
future, we will combine the two network architecture, prosody
model and Tacotron model, together. Design a prosodic feature
extractor that could obtain prosody information automatically
from text, where the prosodic feature helps adding pauses
between syllables in the synthetic speech to make it more
human-like.
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