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Abstract— With the development of spoofing technologies, 
automatic speaker verification (ASV) systems have encountered 
serious challenges on security.  In order to address this problem, 
many anti-spoofing countermeasures have been explored.  There 
are two intuitive recipes to protect an ASV system from spoofing.  
The first one is to use a cascaded structure where spoofing 
detection is performed firstly and ASV is subsequently 
conducted only on the attempts which have passed the spoofing 
detection.  The other one is to perform spoofing detection and 
ASV jointly.  The discriminate reliably of the joint system has 
been proven to be more advantageous than cascaded systems 
with traditional methods, not only in accuracy, but also in 
convenience and computational efficiency.  In this paper, we 
proposed a multi-task learning approach based on deep neural 
network to make a joint system of ASV and anti-spoofing.  The 
performance of different acoustic features and structures of deep 
neural networks has been investigated on the ASVspoof 2017 
version 2.0 dataset.  The experimental results showed that the 
joint equal error rate (EER) of our approach was reduced by 
0.55% compared to a joint system with Gaussian back-end 
fusion baseline. 

Index Terms— anti-spoofing, speaker recognition, replay 
detection, multi-task learning, joint detection 

I. INTRODUCTION 

The role of biometric authentication in data security is 
increasingly important these years.  Although some 
commonly used biometric technologies, such as fingerprint, 
face recognition and voiceprint recognition, have been well 
applied to authentication scenarios, the security of these 
recognition systems is still an urgent problem in the case of 
various spoofing attacks and need to be addressed as soon as 
possible.  In fact, any biometric authentication system has 
some particular weaknesses that are vulnerable to spoofing 
attacks [1], where the most accessible ones are sensor and 
transmission level attacks [2].  For example, using a photo of 
an authenticated user to attack a face recognition system, or 
using a playback recording to attack automatic speaker 
verification (ASV) systems.  These are the common scenes 
that can happen to us.  In this paper, we study anti-spoofing in 
text-independent speaker verification systems. 

Generally, speech spoofing attacks can be categorized into 
four types: impersonation, synthesis, conversion, and replay 
[3].  In order to promote the research on anti-spoofing, the 
automatic speaker verification spoofing and countermeasures 
challenge (ASVspoof) was first launched in 2015, which 
focused on discriminating between synthesized or converted 

voices and those uttered by a human [4].  The ASVspoof 2017 
challenge focused on the detection of replay spoofing to 
discriminate whether the given speech was the voice of an in-
person human or the replay of a recorded speech [5].  Among 
the four kinds of spoofing attacks, replay attack refers to 
when an attacker uses a high-fidelity recording device to 
record the voice of a legitimate authentication system user 
and then uses the recorded playback through the device on the 
ASV system, thereby achieving an attack behavior [6].  Since 
replay attacks are easy to implement and highly similar to 
genuine speech, it is difficult to detect and bring serious 
threats to speaker verification systems [7].  In this paper, we 
focus on replay attacks. 

 
(a) A cascaded system 

 
(b) A joint system 

Fig. 1: (a) The cascaded system of ASV and anti-spoofing. (b) The joint 
system of ASV and anti-spoofing. 

With increasingly attention being paid to the security of the 
ASV system, a large number of anti-spoofing methods have 
been proposed and have achieved quite good results.  Early 
studies [6, 8] proved that the replay detection method is 
effective for ASV systems.  Recent studies [9-11] designed 
independent anti-spoofing systems by using deep learning 
methods and achieved promising results in ASVspoof 2017.  
Most of the current anti-spoofing systems are designed 
separated from the ASV system because it is relatively easy to 
conduct as a stand-alone classifier.  The structure diagram of 
these two systems is shown in Fig. 1.  When performing 
speaker verification, replay detection is performed at first, and 
the speaker verification is conducted subsequently, which is 
called a cascaded detection system.  Another way to improve 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1517978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



the security of the ASV system is to design a joint model to 
prevent spoofing attacks while verifying the speakers, which 
is called a joint system.  To the best of our knowledge, there 
is little research on joint systems than cascaded ones till now, 
where [2] proposed and studied the performance of a joint 
decision system in an i-vector framework, which 
demonstrated the advantage of joint systems. 

In this paper, we studied the joint text-independent ASV 
and anti-spoofing system in a deep learning framework.  It is 
believed that any speech can be represented by a feature 
vector containing speaker and spoofing information, no matter 
the voice comes from an in-person human or is replayed by a 
recording device.  We may consider that a replay utterance as 
a distorted version of natural human speech by passing 
through some specific channels.  Such spoofing properties 
will be reflected in the cepstral features and the features 
derived by deep neural networks from them, which will 
enable the detection. 

The proposed joint system with deep learning has several 
advantages.  Firstly, the speaker verification task and the anti-
spoofing task share the same spectrum features.  Secondly, 
joint model shares a number of common network layers and 
does not require the establishment of two completely 
independent anti-spoofing and ASV models.  These two 
properties will reduce the unnecessary redundant 
computational complexity to a certain extent.  Thirdly, the 
effectiveness of the joint system has been verified in 
traditional methods, e.g. in i-vector space.  It is also expected 
to be workable in a deep learning fashion. 

The remainder of the paper is organized as follows.  
Section � describes the database and the evaluation metrics.  
The joint anti-spoofing and ASV system is presented in 
Section �.  Detailed experimental setup and results are 
reported in Section � and �.  Section � concludes the paper. 

II. DATASET AND PROTOCOLS 

A. Dataset 

In this paper, we used the ASVspoof 2017 version 2.0 
corpus [12], which was released for the ASVspoof 2017 
challenge and designed based on the RedDots corpus [13, 14] 
under various environments and unseen scenarios.  The full 
database contains three subsets: Training set, Development set 
and Evaluation set.  Each subset contains the voice of in-
person human and the replay of a recorded speech.  The 
sampling rate of the entire database is 16 kHz with sample 
precision of 16 bits.  All three subsets are disjoint in terms of 
speakers and are also some differences in terms of data 
collection sites [5].  Detailed information of each subset is 
presented in Table 1. 

B. Evaluation Metrics 

Equal error rate (EER) is adopted to evaluate the 
performance of the joint system on speaker verification and 
spoofing detection respectively.  As a classic evaluation 
metric, EER is the error rate for a specific value of a threshold 
where the false rejection rate (FRR) is equal to the false 

acceptance rate (FAR).  False rejection is a target speaker 
that erroneously classified as an impostor.  False acceptance is 
the opposite case when an imposter is misclassified as a target.  
EER was calculated using the MSR Identity Toolkit Version 
1.0 [15]. 

Table 1: Profile of the ASVspoof 2017 version 2.0 corpus 

Subset # Speakers 
# Utterances 

Non-replay Replay 

Training 10 1508 1508 

Development 8 760 950 

Evaluation 24 1298 12008 

Total 42 3566 14466 

III. JOINT ANTI-SPOOFING AND ASV SYSTEM 

Being different from the cascaded anti-spoofing and ASV 
system, the joint system needs to make speaker verification 
and anti-spoofing simultaneously.  Under this condition, each 
utterance contains two parts of attributes: information about 
the speaker — Χ and information about the genuine/spoofing 
— Ψ.  The hypothesis ( , )H Χ Ψ  means the utterance is a 

genuine utterance from the target speaker Χ, the 
complementary hypothesis 

( , ) ( , ) ( , )
H H HΧ Ψ Χ Ψ Χ Ψ=   referring 

to the case that genuine utterance from any non-target speaker 
or any recordings from target speaker X. 

Based on this assumption and inspired by the recent x-
vector method [16] in speaker verification, we used deep 
neural network to extract an embedding that contains both 
speaker and spoofing information, and used back-end 
classifiers to make the speaker classification and spoofing 
detection jointly based on the extracted embeddings. 

As shown in Fig. 2, the joint ASV and anti-spoofing system 
based on deep neural network can be divided into three parts: 
(a) Pre-training, (b) Re-training and (c) Enrollment.  The 
detailed explanation is as follows: 

A. Embedding Extraction 

In order to train an embedding which contains both speaker 
and spoofing information, we proposed the embedding 
extraction method based on convolutional neural network 
(CNN) and deep neural network (DNN).  The frame-level 
features with front-end processing are used as the inputs of 
pre-training networks.  As for speaker verification, we used 
softmax loss to train the embedding.  The softmax loss is, 

1

log
T

j j
j

L y s
=

= −  ,                               (1) 

where js  is the j-th value of the output vector s, which 

indicates the probability that the current sample belongs to the 
j-th category; y is a T-dimensional vector which represent the 
speaker label. 

As for anti-spoofing, we also used softmax loss to train the 
embedding.  Spoofing detection is a binary classification 
problem: genuine or spoofing. 
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The two losses are then weighted equally to get an overall 
loss for the whole pre-training network.  Through such a pre-
training network, we can get embeddings that contain speaker 
and spoofing information, and could provide relatively 
representative attributes for subsequent classification and 
discrimination.  Fig. 2(a) shows the detailed structure of this 
part. 

B. Re-training on Speaker Verification and Spoofing 
Detection 

After extracting embeddings with a unified pre-training 
network, two different DNN discriminators are trained on its 

backend to identify the speaker and to detect spoofing attacks 
separately.  By using pre-training to extract embeddings, and 
by utilizing two DNN classifiers on its backend, the entire 
joint ASV and anti-spoofing system has been established.  Fig. 
2(b) illustrates this part. 

C. Adaptive Classifier 

As shown in Fig. 2(c), in speaker enrollment stage, some 
layers of the trained DNN classifier are retrained to make the 
previously trained network suitable for the currently 
registered speakers. 

 
(a) Pre-training stage.  This is the structure of the network that shared by both ASV and anti-spoofing tasks. 

 
(b) Re-training stage.  The trained embeddings from stage (a) are treated as the inputs of the re-training stage. 

 
(c) Enrollment stage.  The trained embeddings from stage (b) are treated as inputs of the enrollment stage.  The freezing and trainable parts are from the dotted 
part in stage (b).  The trainable layers (dotted part) are the layers that need to be optimized at this stage. 

Fig. 2: The framework of our proposed joint ASV and anti-spoofing system. 
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IV. EXPERIMENTAL SETUP 

A. Data Preparation 

The dataset we used was ASVspoof 2017 version 2.0 
corpus.  10 speakers from Training and 8 speakers from 
Development subset (18 speakers, 4726 utterances in total) 
were utilized to train the joint model, and 17 speakers from 
Evaluation subset (12376 utterances) were used to verify the 
performance of the joint system.  The EER of speaker 
verification and anti-spoofing were calculated separately. 

B. Features 

Two different features were extracted for comparative 
experiments, log mel filter bank (Fbank) and mel-frequency 
cepstral coefficients (MFCC).  After removing the silent parts 
by VAD, a frame-length of 25ms and 15ms sliding window 
was applied to extract acoustic features.  The Fbank feature 
was 128-dimensional and MFCC was 19-dimensional with 1st 
and 2nd order delta features (57-dimension in total).  For the 
problem that each utterance had different numbers of frames, 
we used a 10 frames’ length with 3 frames’ sliding window 
on the frame-level features to divide each utterance into 
several fragments with the same size. 

C. Pre-training 

Two different networks were used and softmax layers were 
taken as the metric for pre-training.  One of the pre-training 
networks was CNN followed by a two-layer fully-connected 
network for transforming features into one-dimensional 
vectors.  The structure is called CNN-DNN in this paper, 
whose details are given in Table 2.  Another pre-training 
network was a six-layer fully-connected DNN network.  
Table 3 illustrates the DNN architecture we used to extract 
embeddings. 

Table 2: Architecture of CNN-DNN pre-training 

Layer name Structure Stride # Parameters 
Conv1 2 2× ,64 1 1×   0.32K 
Conv2a 2 2× ,128 1 1×  32.9K 
Conv2b 2 2× ,64 1 1×  32.8K 
Conv3a 2 2× ,64 1 1×  16.4K 
Conv3b 2 2× ,32 1 1×  8.2K 
Conv4 2 2× ,64 1 1×  8.3K 
Dense1 1024 - 839K 

Embedding 512 - 525K 

Table 3: Architecture of DNN pre-training 

Layer name Structure # Parameters 
DNN1 2048 2.62M 
DNN2 2048 4.19M 
DNN3 1024 2.10M 
DNN4 1024 1.05M 
DNN5 512 0.52M 

Embedding 512 0.26M 

D. Re-training 

Two 3-layer DNNs were utilized to train two sub-networks 
on speaker verification and spoofing detection separately.  

The structures of DNNs for the two parts were both 
512 256 128× × .  The total numbers of parameters were 854K. 

E. Adaptation 

As for testing, 20 utterances per speaker were taken for 
enrollment (340 utterances).  The final output layer softmax 
was adjusted and retrained in conjunction with the last layer 
of DNN, making the classifier to fit the number of enrollment 
speakers. 

V. EXPERIMENTAL RESULTS 

Table 4 presents the accuracy values (ACC) and EER 
results obtained from different features with CNN-DNN pre-
training.  Table 5 illustrates the performance with DNN pre-
training. 

For the results of speaker verification, the best performance 
came from the DNN based pre-trainining architecture with 
MFCC features, its EER was 9.76% relatively lower than that 
of the CNN-DNN architecture.  While the best result of anti-
spoofing came from the CNN-DNN architecture with MFCC 
features, 7.83% relatively lower than that from the Fbank with 
DNN in EER. 

We compared our joint system’s performance with the 
cascaded and joint method of ASV and anti-spoofing in [17].  
As for speaker verification subtask, our joint system achieved 
the best EER of 5.27% in speaker verification on evaluation 
subset by using MFCC with DNN pre-training while [17] 
achieved the best EER of 4.92% with infinite impulse 
response constant Q mel cepstral coefficients (ICMCs) 
features by using cascaded combination.  For anti-spoofing 
task, our system achieved an EER of 13.19% by using MFCC 
with CNN-DNN pre-training, while [17] achieved 21.28% 
with linear frequency cepstral coefficients (LFCCs) features.  
For the joint system in [17], the best EER of the two tasks are 
2.90% and 17.98% separately.  Detailed comparison results 
are shown in Table 6. 

By comparing the average results in Table 6, we can see 
that the joint system we proposed achieved an EER of 6.24% 
in ASV task, a little worse than the EER of baseline in [17].  
But in terms of anti-spoofing, our system achieved a better 
EER than [17]. 

Moreover, in our joint system, the MFCC features were 
better in terms of ACC and EER of speaker verification for 
both CNN-DNN and DNN.  But for anti-spoofing, Fbank 
achieved better results in DNN but MFCC in CNN-DNN, so 
it is still not quite clear which feature is better and further 
research needs to be explored for this. 

Finally, we combined the results of ASV and anti-spoofing, 
the false reject and false accept samples of two sub-tasks were 
discriminated as misjudgment samples.  In other words, as 
long as one of the two indicators was wrong, the attempt was 
rejected by the system.  Therefore, final results were able to 
be obtained intuitively. 

As shown in Table 7, the results of our ASV and anti-
spoofing were combined together to get the final 
discrimination (accept or reject).  Compared with the results 
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of Gaussian back-end fusion baseline in [17], our joint system 
reduced by 0.55% in EER 

Table 4: The performance of CNN-DNN pre-training architecture with 
adaptation DNN classifier on Fbank and MFCC features 

Features Speaker Verification Anti-spoofing 
EER[%] ACC[%] EER[%] ACC[%] 

Fbank 7.47 78.16 14.55 90.73 
MFCC 5.84 82.32 13.19 91.25 

Table 5: The performance of DNN pre-training architecture with adaptation 
DNN classifier on Fbank and MFCC features 

Features Speaker Verification Anti-spoofing 
EER[%] ACC[%] EER[%] ACC[%] 

Fbank 6.39 80.02 14.31 91.05 
MFCC 5.27 84.23 15.76 88.43 

Table 6: The comparison of cascaded/tandem combination and Gaussian 
back-end fusion method in [17] with our joint ASV and anti-spoofing system 
based on deep learning framework.  All the results of each system are the 
average value. 

System Speaker Verification 
EER[%] 

Anti-spoofing 
EER[%] 

Cascaded combination 5.89 24.75 
Gaussian back-end fusion 3.65 20.74 

Our joint system 6.24 14.45 

Table 7: The final discriminate result of Gaussian back-end fusion method in 
[17] and our joint ASV and anti-spoofing system. 

System EER[%] 
Gaussian back-end fusion 11.41 

Our joint system 10.86 

VI. CONCLUSIONS 

In this paper, a multi-task learning approach based on deep 
neural network was proposed and experimented to make a 
joint system of ASV and anti-spoofing.  Firstly, embeddings 
contained speaker and spoofing information were extracted by 
two kinds of pre-training networks.  Then, two DNN sub-
networks were trained based on the extracted embeddings.  
Finally, adaptation for the DNN sub-networks was conducted 
during the speaker enrollment stage.  The performance of our 
joint system was evaluated on the ASVspoof 2017 v2.0 
database.  The results showed that the EER of our joint 
system was reduced by 0.55% compared to the Gaussian 
back-end fusion baseline. 

It can be seen that DNN pre-training architecture was better 
than CNN-DNN in speaker verification, no matter what kind 
of acoustic feature was used.  For anti-spoofing, the CNN-
DNN was more prominent than DNN.  As for features, MFCC 
was better than Fbank for speaker verification. 

This work validated the feasibility of the deep learning 
method in the joint ASV and anti-spoofing system and 
provided a primary framework for solving the multi-task 
learning of the joint system.  Further work will study how to 
improve the performance of ASV and anti-spoofing jointly 
with other deep learning methods by using different acoustic 
features. 
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