
Recurrent Neural Network for Web Services
Performance Forecasting, Ranking and Regression

Testing
Muhammad Hasnaina, Muhammad Fermi Pashab, Chern Hong Limc, and Imran Ghand

a,b,cMONASH University, Malaysia
Email: {muhammad.malik1,muhammad.fermipasha,Lim.ChernHong}@monash.edu

dIndiana University of Pennsylvania, USA
Email: imransaieen@gmail.com

Abstract—Accurate estimation of web services performance,
which is critical to ensure the consumers satisfaction on web
services is still a challenging task due to the dynamic, and person-
alized requirements of different individuals. Efficient estimation
of web services performance can lead to a better ranking of web
services. Regression testing is then performed on the ranked
web services to ensure that existing functionality of the web
services is not impacted through evolution in the web services.
Soft computing techniques are highly resource consuming, and
more complex for practitioners. Moreover, they show complex
approximation with a low propagation, which can be improved
by using the advanced deep neural networks. Previously proposed
web services performance estimation and analysis have been
never considered from the deep neural network. To address
the problem of efficient estimation of web services performance,
gated recurrent unit (GRU) has been proposed with the use of
time slice quality of service (QoS) data of web services. The
GRU model can analyze QoS values obtained from different
sets of users in different timestamps. The proposed approach
has been evaluated on the web services dataset and comparison
indicates that the proposed approach shows the better prediction
and estimation than the state of the art approaches.

Index Terms—web services, performance prediction, GRU
model, quality of services

I. INTRODUCTION

Web services paradigm is evolutionary and requires op-
timized testing to ensure that web services users have sat-
isfaction on their invoked web services. Regression testing
addresses the concerns produced from web services evolution.
It aims at identifying the faults of modified web services
[1]. Many of the existing regression testing approaches [2-
3] rely on the code coverage and fault detection strategies.
Code coverage and fault detection approaches render the path
of maximal code coverage as well as the minimal cost can ad-
dress the code problems through the test coverage optimization
in the conventional software systems [4-5]. For frequent web
services update, the slice based regression testing approach can
fix the functionality issue with the help of software patches
[6]. However, code or slice based regression testing approaches
cannot be used for the web services which have been integrated
by a third party web service. For instance, code unavailability
of a partners web service makes above-mentioned regression

testing approaches ineffective as the test coverage criteria can-
not be met without code [7]. Consequently, researchers have
focused on QoS features published by service providers or
collected by end users [8]. However, values published by web
service providers cannot be exactly same to those obtained
at users’ end. Moreover, QoS values in case of correlated or
composite web services do not necessarily provide maximum
QoS values to the end users [9]. There are certain factors which
can affect in creating the divergence between the guaranteed
values, and QoS values obtained by users.

Constant and unpredicted changes in performance of web
services occur due to network and other contributing factors.
To measure the user-perceived QoS online transactions, usu-
ally throughput and response time performance metrics are
used. In [10] it has been reported that the response time is a
key metric used to measure users satisfaction in web services.
Therefore, customers seek quality web services which meet
their business requirements, otherwise they reject web services
with response time as exceeds the acceptable threshold. More-
over, definitions of response time and throughput have been
given as follows:

“Response time comprises the period of time between entry
of a request by a customer and completion of processing for
this request while throughput is the amount of data moved
successfully from one place to another in a given time period”
[10].

Both the performance measuring metrics such as response
time and throughput have been widely used for the selection
of web services [11]. The value of each of two performance
metrics is measured externally by calculating the response time
in (sec), and throughput as data moved in (kbs) of a web
service. Moreover, instrumentation can be internally used to
measure the timing and number of events.

Performance values attained at users’ end should match to
a service level agreement (SLA) document [12]. Matching
between the users’ end attained values indicate that how a user
is satisfied with the web service. Likewise, closer satisfaction
and the original quality metrics values may increase the
satisfaction of services users. A typical web services user
prefers to select web services with the best (QoS) performance

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

96978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



[13]. However, web services which show a low throughput
value and a high response time value cannot be ignored for
future use. For instance, an institutional web service even
with the changing performance values is necessarily accessed
by users. This may be the same for a number of other web
services from different domains. The QoS performance can be
achieved by the computation of historical QoS data to forecast
their performance and rank web services for further regression
testing. Regression testing can be instituted for web services
with the low QoS forecast before the web services with a high
QoS forecast.

The adoption of deep learning (DL) in recent researches
led to use deep structures in a number of novel works [14].
Deep learning approaches have been widely used for object
detection, object classification, and image segmentation. More-
over, the applications of DL include the webpage aesthetics
quantification and software fault detection with the help of
convolutional neural networks (CNNs) [15], and deep neural
networks (DNNs) [16], respectively. The DL technology has
become popular due to its architecture which can help to
design more updating sets of features. Moreover, the perfor-
mance of DL architecture at execution time is higher than the
traditional machine learning models [14].

To overcome web services performance forecasting and
ranking issue, we propose to use a variant of sequence DL
model known as gated recurrent unit GRU on our collected
QoS dataset of web services. With the increasing amount
of published web services, users require to select those web
services which have better forecasted performance based on
their historical invocation records. Web services performance
prediction can help us in conducting the regression testing.
Moreover, the web services regression testing can be
performed on the predicted score of each web service. A
web service with a high predicted performance score can
undergo regression testing after the regression testing of
web service with a low predicted performance score and
so on. Performance metrics are taken into consideration for
the proposed method for the 30 time slices after the web
services have been published. We use throughput quality
metric values as inputs to keep the problem definition simple,
and applicable to other services and web applications. The
main contributions of this paper are given as follow:

1) To overcome web services performance prediction and
testing issue, we prorpose applications of RNN, partic-
ulalry GRU models which are trained and evaluated on
the time series throughput information.

2) A rank sum web services (RSws) method is defined to
rank web services from GRU models using the predicted
performance of web services datasets.

3) Performance prediction comparison of GRU models is
performaed with the SimpleRNN, and LSTM models.

4) Web services are ranked using the RSws score of each
web service, and a web service with the least RSws
score is tested before the web services with a highest
RSws score. Furthermore, we identify faults from test

case execution from our proposed assertion analysis.
Section II of this paper presents literature review of research
works which are related to this study. Section III gives
description of proposed methodology for this work. Section
IV is about results and discussion, and section V concludes
the study.

II. LITERATURE REVIEW

In this section, we briefly discuss, the web services selec-
tion and deep neural networks (DNNs) based classification
approaches.

A. Web services selection and ranking

A hybrid multi-criteria decision method MCDM [17] has
been recently proposed with the consideration of multiple
criteria for the selection of web services providers. Both
relation and interdependencies between criteria have never
been used for the selection of web services. The proposed
hybrid-MCDM approach is feasible for the selection of web
services providers. Web services selection is based on the
performance of the vendor which means that a web service
published by a well-known vendor shows a higher selection
by users. This hybrid-MCDM is helpful for the selection of
cloud web services because historical QoS information is not
available for web services users.

Relevancy Function [18] for web services selection is
mainly based on the users request. Relevancy value is de-
termined by using quality metrics. A web services with a
high relevancy values is ranked at the top of web services.
Trust model [19] is proposed to optimize the web services
selection through the trust rate of services providers. Users
preference of a service is applied to calculate the trust rate of
a service provider. Subsequently service selection approaches
[18-19] mainly deal with the selection of web services from
services providers aspects. Dynamic service selection can be
improved by considering the correlation among QoS attributes.
Both user defined QoS restraints, and inter-services correlation
have been combined together to propose a model [20] which
makes a tradeoff between minimizing the penalty of breach of
a contract and maximizing the QoS restraints.

GTrust model [21] involves the functionality coverage
which can be given by a web service to a service user.
Moreover, the concept of degree of dependence represents a
relationship between services in a group. For the selection of
a web service group, this model is appropriate in the given
scenarios. However, trust calculation of individual groups can
be done in future works.

Users satisfaction and web services quality are closely
related to each other in web services paradigm. A primitive
research work carried out by Mohanty et al. [22], is mainly
focused on the selection of web services. However, dynamic
business environment has adverse effects on the users satis-
faction on quality of web services.

Most of the above-mentioned studies [17-19] discuss the
web services selection regarding the trust and reputation of
services providers. However, trust calculated from a web

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

97



service providers perspective is less efficient as a number of
factors involve in determining trust of web services providers.
For instance, developers reputation can be used to select the
web services. Although, requirement-based regression testing
techniques use the developers priority score for each require-
ment along with other factors. Therefore, a research work can
be carried out to include the reputation and skills, experience,
and number of completed projects for a software development
team.

B. Deep Learning based web services evaluation

Deep Learning-Based Code Readability Model (DeepCRM)
[23] involves multiple ConvNets which are skillful from differ-
ent perspectives. Each ConvNet has a feature learning network
that contains a convolutional layer with numerous filters, such
as ReLU function and a max-pooling layer. Moreover, a classi-
fication network which is composed of fully-connected layers
leads to two-way Soft-max classifier. DeepCRM outperformed
many state of the art classification models. DeepCRM can be
extended with the new features of software.

Deep Hybrid Services Recommendation (DHSR) [24] is
composed of collaborative filtering and component contents.
Feed-forward neural networks represent these two compo-
nents. DHSR captures the complex interaction between web
services and mashups. Description of services tags along with
the mashups have been found crucial to recommend web
services. Semantic similarities between services and mashups
are extracted with the help of collaborative filtering.

CL-ROP [25] in the combination of Convolutional Neural
Network (CNN) and Long Short Term Memory (LSTM) is
proposed to predict the reliability of web services. The former
component CNN extracts the features and latter component
LSTM is aimed to solve the problem of gradient diffusion
which arises from long and lengthy processing of a recurrent
neural network (RNN). This model has potential to be used on
the dataset with the multiple quality attributes of web services.

Deep belief network (DBN) [26] is evaluated on
WEBSPAM-UK2007 dataset. DBN outperformed SVM and
RF as shallow classifiers. Web spam classification accuracy
is approved by DBN to a certain extent. Complexity in
the proposal of DBN is a big limitation in the context of
a high time. This can be addressed by extended work on
the combination of DBN classifier with meta-classifiers by
removing the incompatible parts for better classification of
web spams.

Long short-term memory (LSTM) model is a type of RNN
model where the hidden layers are treated as memory unit. It
is capable to correlate with time series in both long and short
terms [27]. The application of RNN has been studied in [28]
where software reliability was investigated regarding software
failure data patterns. A feedforward RNN model showed
a better prediction than the artificial neural networks. In a
recently published work [29] Layered RNN (L-RNN) has been
employed with the feature selection to efficiently improve the
fault detection. L-RNN outperformed the ANN, Nave Bayes
(NB), and logistic regression (LR) classification and prediction

techniques in term of area under curve. Moreover, the proposed
L-RNN model obtained the excellent classification based on
AUC results. RNN models have one of the important limita-
tions, which include gradient vanishing problem [30] that is
not observed for a small number of unfolded time steps. For
multiple time scales, feedback analysis cannot be precisely
analyzed by using RNN models. To overcome, this issue,
gated recurrent units (GRU) models have been proposed to
prevent the gradient vanishing. Both, the short and long term
dependencies from sequences can be efficiently learnt by GRU
layer with the reset and update gates.

Deep learning models have potential to apply or extend
them for various software artefacts and phases. For instance,
graphical user interface can be made more user-friendly with
the applications of DL models for better selection of objects
to place them on webpages. Moreover, DL models can be
applied at software development and testing phases for better
selection of development and testing teams through forecasting
their performance. Evolutionary development in deep learning
is simplifying the process of object identification, performance
forecasting, and classification. Optimization in improving the
computation speed with a less number of layers can be adopted
to solve the web services performance forecasting, and ranking
problems for efficient regression testing. Hence, it seems that
there is not study which is aimed at providing application of
GRU model on web services’ performance forecasting, and
regression testing. We propose a methodology to execute the
GRU model application with the optimized hyper parameters
tuning.

III. METHODOLOGY

To predict web services performance accurately, the fore-
casting model GRU has been proposed in this section, as
shown in Figure 1. For the evaluation, and performance
comparison of GRU model, we parallelly run LSTM, and
SimpleRNN models. The proposed methodology comprises of
four phases as given in the following.

We perform GRU implementation to build a network for
forecasting the performance of web services. Since long the
problem of web services performance forecasting has been
remained unaddressed. Many studies attempted to address the
selection of web services, and GRU model-based application
has never been considered. Therefore, we proposed to use
sequential input data of web services and single-output model
(many to one) as shown in the results and discussion section.
The main input of the model is throughput metric value in a
sequence from different web services users.

A. Data preparation

The first phase in our proposed methodology is given
with the short description of web services datasets, and their
preparation as given follows:

1) Web services dataset: We prepared web services dataset
to forecast the performance of web services. The dataset was
collected by using the users’ load on web services for 30 time
slices. The chosen five web services (WS1-WS5) have been

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

98



Fig. 1. Proposed methodology

used in a published work [33] their metadata is accessible as
WSDrean dataset from Github repository. These five chosen
web services are randomly selected. We can use other web
services to evaluate the efficiency of the proposed research
methodology in the future work. The web services datasets
were collected in Postgraduate Lab at Monash University
School of IT on 17/05/2019 to 16/6/2019 for ranking of web
services. We prepared dataset in 30 time slices under two
different users’ scenarios. This is because, we require to pre-
dict the performance of web services under changing load of
users. However, number of time slices, and scenarious can be
increased. For instance, two users scenarios include 100, and
200 users. To simulate the data collection, we executed load
testing to determine the behavior of web services in terms of
performance metrics. Hypertext transfer protocol (HTTP) GET
method was used to make a request for information located
on the web servers. We report response time, throughput, and
latency metrics values in our web services datasets.

2) Data Usage: We use 30 time slices data into input arrays
for training and testing the GRU model as well as other RNN
models (LSTM, and SimpleRNN). We split the data to train
and test the GRU model. Therefore, we use 90% data for
training and rest of the 10% data for testing and evaluation of
the model.

B. Model training

The second phase is focused on setting a criteria to train
our model and hyper parameters tuning with the objectives of
achieving a high accuracy metric value. This phase also shows
the selection of a best model which has better efficiency to
address the gradient vanishing issue.

Fig. 2 is the illustration of training and testing data of web
services datasets. Time slice 1 to time slice 27 data is proposed

Fig. 2. Proposed models training and testing

to be used for training RNN models. Training dataset (90% of
total throughput records) is used for the learning process of
RNN models while testing dataset (10% of total throughput
records) is used to evaluate the performance of models.

1) Gradient vanishing problem: RNN models are spe-
cific to process the sequential or historical data. However,
SimpleRNN model suffers from the short term memory. If
sequence of input information is larger, they are inefficient to
carry the information from the earlier to latter ones. The web
services invocation record may come from multiple users in
a long sequence, and requires an efficient memory handling
mechanism to forward it for testing after performance predic-
tion. If RNN forgets the performance value of a web service
regarding the high or low values, its usefulness decreases
performing the testing for identification of performance issues.
For example, if a web service is accessed by users, and gives
low performance value, we cannot forget this one to improve
quality of a web service. Memory should be used to keep the
performance of a web service, and forward the information
to generate test case by using regression testing. To overcome

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

99



the memory issue, various long-term memory cells have been
introduced. Two most important of them are given as follows:

LSTM: To solve the vanishing gradient problem LSTM
model has been proposed in [31]. A LSTM model contains
three gates namely, input gate, forget gate, and output gate.
The purpose of an input gate is to specify that which incoming
input value is stored in the upcoming state. The forget gate
is used to decide which of the previous state information is
no longer stored. The output gate identifies that which of the
information is sent out from the new state.

GRU: Cho et al. [32], originally proposed GRU, and is
considered as a variant of the LSTM with a very simplified
architecture. A GRU model comprises of reset gate r and
update gate z. The purpose of update gate is to decide which
portion of a hidden state ht is to be updated with the new
candidate hidden state ct. On the other hand, reset gate is
proposed with the aim to determine which portion of new state
is to be ignored. Moreover, GRU has been demonstrated with
the fast computation, lower complexity, and equivalent ability
for learning long dependency between various time steps as
compared to LSTM.

GRU with the forward pass has been given as

zt = σ(WxzXt + Uhz ht−1 + bz) (1)

rt = σ(WxrXt + Uhr ht−1 + br) (2)

ct = tanh(WxcXt + Uhc(rt � ht−1) + bc) (3)

ht = (1− zt)� (ht−1 + zt ∗ ct) (4)

Where Xt denotes the input data as x = x1, x2 . . xn,
tanh represents the hyperbolic tangent function which is often
used as an activation function of the candidate state, sigma
represents the logistic sigmoid functions of reset and update
gates. Moreover, ct represents the candidate state, and ht is
the GRUs output. Wxz , Wxr, and Wxc are representing the
weight matrices between input layer, and update gate, and reset
gate as a candidate state, respectively. Uhz , Uhr , and Uhc are
representing the weight matrices of cycle connections; while
bz, br, and bc are representing the relevant bias vectors.

2) Lowest Mean Absolute Error (MAE) metric value and
best performance prediction score: To evaluate the perfor-
mance of prediction models, compile method is set with the
MSE loss function with the objectives of penalizing the higher
prediction errors. Moreover, we propose to use MAE metric
to assess the quality of our used model with comparison to
LSTM and SimpleRNN sequential models.

MAE =
1

n

n∑
i=1

abs(yi − λ(xi)) (5)

To achieve the higher performance prediction score, we require
hyper parameters tuning for above-mentioned models. We train
GRU model on varying number of epochs, and choose the best
one epoch regarding lowest MAE score. Based on the selection
of best epoch and training of proposed GRU model, results in
comparison to SimpleRNN, and LSTM models are presented
in the section IV.

3) Hyperparameters’ tuning: In the following we define
the hyper parameters’ tuning criteria for our proposed GRU
model.

• To train GRU model, increasing number of epochs may
increase its performance. Therefore, we train models
between 100 and 1000 epochs.

• We use three activation functions in the hidden layer
which include Sigmoid, tanh, and ReLU. However, after
GRU training on different number of epochs, we choose
ReLU as an activation function as it has better training
and testing accuracies than the other activation functions.
Moreover, ReLU does not show back propagation errors
unlike the other activation functions.

• ReLU computation is fast as compared to other activation
functions.

• Increasing the number of neurons in Dense layer may
increase the efficiency of GRU model. Therefore, we tune
this layer with the increasing number of neurons and find
the best results with 100 neurons.

The purpose of tuning is to retain the best GRU model for the
performance prediction of web services.

C. Performance prediction of web services

The proposed third phase as performance prediction is
aimed to predict the performance value of each web service
dataset from 30 time slices information. The third phase of
the proposed methodology is explained in the following:

1) Sequential input data: In the preceding phase of pro-
posed methodology, we retain best GRU model with high
accuracy results. We required sequential input data for demon-
stration of performance prediction. For this, we propose to use
sequential data as input from 30 time slices.

2) Performance prediction: Since we use GRU model with
data from 30 time slices, output as performance prediction
is received with one value. GRU model keeps them in the
memory and releases the performance prediction information
for further prioritization of web services.

3) Evaluation computation: To obtain the forecasted per-
formance value of web services for the next time slice, we take
output values to rank web services. Moreover, the value of
accuracy metric MAE is kept for compilation of GRU model.
To compare the performance of GRU model with SimpleRNN
and LSTM, same hyper parameters are used.

4) Ranking web services: The output value of each web
service is used to rank the web services. A web service with
the high forecasted performance value does not require to be
executed for regression testing before a web service with the
lesser performance value. Therefore, we set the priority of
each web service dataset regarding the respective forecasted
performance score of web services. For the purpose of ranking
web services, a rank sum web service (RSws) method is
defined which gives the rank of a web service for predicted
values as given in the Eq. (6).

RS(ws) =
1

N

n∑
k=1

k (6)

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

100



Where k is representing the predicted values, and N is the
number of predicted values from the models.

D. Assertion Analysis

To specifiy the faults after the execution of test plans,
assertions are proposed to be used for regression test case
prioritization. An assertion is applied to compare the actual
test results with the expected results from users’ requests. To
analyse the assetion results, we proposed to use response status
as a metric to report the outome of test plans. To automate the
detection of faults in web services, we create assertions in
JMeter that tells how a ranked web service performs against
the expected performance. Assertions’ response gives an exact
information of issues in a ranked web service. For example,
a response code status indicates which faults a web service is
primarily having at the moment. An assertion verifies whether
a test is passed or failed. It shows 200 OK as a response status
code if a test case passes without any failure. Moreover, if a
test case fails, it shows different types of error codes.

IV. RESULTS AND DISCUSSION

This section presents results and discussion on GRU models,
regarding performance prediction of web services in 30 time
slices. We were interested to predict the performance of web
services datasets for the next time slice from GRU-models.
To do so, we ran proposed GRU-100, and GRU-200 models
on throughput quality metric values obtained from 100, and
200 users respectively. We examined two different number of
users to reveal the changing performance behaviour of web
services. Both of the GRU models have same hyperparameters.
However, the proposed GRU-100, and GRU-200 models vary
in their input values. For instance, GRU-100 is trained and
evaluated on WS1-WS5 data of 100 users, while training and
evaluation of GRU-200 is based on the data of 200 users from
same web services.

The actual time slice plot of web services (WS1-WS5)
performance in 1-30 time slice is shown in Fig. 3-12.

Fig. 3. GRU-100 Model for WS1 Dataset

Fig. 4. GRU-200 Model for WS1 Dataset

Fig. 3-4 show the performance prediction results of WS1
from GRU-100, and GRU-200 models. We illustrate the per-
formance prediction results for 30 time slices defined in the
methodology section. Fig. 3 shows a matching of predicted
performance with the actual performance in a number time
slices. Fig. 4 also shows a matching of the predicted per-
formance with the actual performance in various time slices.
From these matchings, It is indicated that GRU-100 model has
much better performance prediction than GRU-200 model.

Fig. 5. GRU-100 Model for WS2 Dataset

Fig. 6. GRU-200 Model for WS2 Dataset

Fig. 5-6 present the performance prediction results of WS2
from GRU-100, and GRU-200 models. Based on the actual,
and predicted performance values shown in Fig. 5, and 6, there

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

101



is a high volatility in the actual performance values that gives
evidence about the spike detention of GRU-100, and GRU-
200 models. Overall, GRU-100 has much better prediction
accuracy than GRU-200 for WS2 as given in Table IV.

Fig. 7. GRU-100 Model for WS3 Dataset

Fig. 8. GRU-200 Model for WS3 Dataset

Fig. 7-8 present the performance prediction results of WS3
from GRU-100, and GRU-200 models. Based on the actual,
and predicted performance values shown in Fig. 7, it is ob-
served that GRU-100 model performance prediction is closely
matched to the actual performance values. As shown in Fig.
8, the performance prediction of GRU-200 from WS3 also
matches to the actual values in the maximum number of time
slices. We also find that GRU-100 has excellent prediction
capability as compared to GRU-200 model from WS3 dataset.

Fig. 9-10 show the performance prediction results of WS4
from GRU-100, and GRU-200 models. We detected volatality
in the actual performance of WS4 for GRU-100 model. Pre-
dicted perforamance of WS4 was found to be closely matching
to the actual values as shown in Fig. 9. On the other hand,
performance prediction of WS4 from GRU-200 is better than
GR-100.

Fig. 11-12 present the performance prediction results of
WS5 from GRU-100, and GRU-200 models. We observed one
spike in the actual performance of WS5, as shown in Fig. 11.
We also see three spikes in the actual performance of WS5,
as shown in Fig. 12. Overall, the performance prediction of

Fig. 9. GRU-100 Model for WS4 Dataset

Fig. 10. GRU-200 Model for WS4 Dataset

WS5 is highly matched to the actual performance from both
GRU-100, and GRU-200 models.

In Fig. 3-12, we observed the prediction results of GRU-
100, and GRU-200 models from WS1-WS5 datasets. Both
GRU models provide the accurate approximation to the actual
performance data. We then show the ranking of web services
from predicted performance of web services (WS1-WS5)
datasets.

Table1 is the illustration of predicted performance results
for the next time slice. Based on the next time slice predicted
performance values of web services, we determine RS(ws)
score of all individual datasets. The proposed GRU-100, and

Fig. 11. GRU-100 Model for WS5 Dataset

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

102



Fig. 12. GRU-200 Model for WS5 Dataset

TABLE I
PERFORMANCE PREDICTION FOR WEB SERVICES DATASETS

Model Performance
Predicted
(WS1)

Performance
Predicted
(WS2)

Performance
Predicted
(WS3)

Performance
Predicted
(WS4)

Performance
Predicted
(WS5)

GRU-100 11.86 62.96 4.31 16.24 4.56
GRU-200 17.58 148.8 7.72 25.84 9.06

GRU-200 models on different datasets show various results.
For instance, GRU-200 model shows better performance pre-
diction than GRU-100 model from WS1-WS5 datasets. This
is due to larger size of dataset (200 users) which is used to
train the GRU-200 model in comparison with the GRU-100
model that is trained on a smaller size of dataset (100 users).

Fig. 13. GRU-100, and GRU-200 Models for web services performance
prediction

Fig. 13 is the presentation of predicted performance values
of WS1-WS5 from GRU-100, and GRU-200 models. Dif-
ference between predicted performance values of WS1 from
GRU-100, and GRU-200 is not highly significant as shown
in Fig.13. Therefore, performance of WS1 improves little
while increasing the number of users. However, the predicted
performance values of WS2 from GRU-100, and GRU-200
models are greater with the marginal difference. It means that
performance of WS2 improves while the number of users
increase. Moreover, we noticed that performance prediction
of WS3 remained lower than the rest of web services. Also,
difference between performance prediction of GRU-100, and

GRU-200 from WS3 was found least. It indicates, WS3
performance does not improve with the increase of number
of users. As displayed in Fig. 13, we observe the difference
between predicted performance values of WS4 from GRU-
100, and GRU-200 models. Furthermore, we knew that the
predicted performance of WS4 improved while increasing the
number of users. However, performance improvement of WS4
for 200 users was better than WS1, WS3, and WS5 web
services. The peroformance prediction of WS5 from GRU-100,
and GRU-200 models was better than the WS3 web service.

TABLE II
WEB SERVICES RANKING

Dataset RS(ws)
score

New
Ranking

WS1 14.72 3
WS2 105.88 1
WS3 6.02 5
WS4 21.04 2
WS5 6.81 4

Table II is showing us the rank sum values as well as new
ranking of web services. The new ranking of web services
has been determined by using the proposed RS(ws) method
given in Eq. (6). We have prioritized the web services by
calculating RS(ws) score of each web service. From Table II
results, we can set the new priority of web services regarding
their calculated RS(ws) score. This priority of web services is
further used in the next phase of the proposed approach.

A. Assertion analysis results

The Get method of HTTP under different scenarios with
ramp up period, and loop counts is esecuted. Since we
perform regression testing, we apply GET parameter to request
information from web services. We achieve various assertions
which indicate whether a test plan is successful or it is
producing some faults. Results are reported according to the
new ranking of web services as given follows:

TABLE III
TEST PLANS, AND RESPONSE CODE RESULTS

Dataset Test Plan Scenarios
(Users)

Response Code

WS1 1000 301, 404, 502, Non-
HTTP

WS2 1000 200
WS3 1000 302, Non-HTTP
WS4 1000 200, 301
WS5 1000 200, Non-HTTP

Table III is the illustration of test plans and response code
results of ranked web services. We have achieved various
response codes with 1000 users test plan scenario. We have
experienced five types of faults while accessing the web
services under the same users load as shown in Table III. For
web services datasets (WS1 - WS5), we experience 300, 301,
404, 502 Non-HTTP errors whereas we also experience 200
response code which indicates that the HTTP request to a
web service is successfully processed. We highlight the faults

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

103



identified in web services by using test plans as shown in Table
III. By the execution of test plans with low to high number
of users may help us in identifying the first fault in the web
service.

B. Performance Comparison of GRU-100, and GRU-200 with
LSTM, and SimpleRNN models

In this comparion, GRU-100, and GRU-200 are compared
with the their forefather LSTM, and SimpleRNN predictors,
where GRU-100, GRU-200, and their contenders have same
origin called as recurrent neural networks.

TABLE IV
PREDICTION ERROR COMPARISON RESULTS OF GRU-100 MODEL

Dataset GRU-100 LSTM SimpleRNN
WS1 0.70% 0.79% 1.35%
WS2 4.87% 4.99% 8.81%
WS3 0.17% 0.19% 0.16%
WS4 1.38% 1.17% 2.07%
WS5 0.19% 0.19% 0.10%

Table IV is presenting accuracy comparison results of GRU-
100, LSTM, and SimpleRNN from WS1-WS5 web services
with the first scenario of 100 users. As shown in Table IV,
the next time slice performance prediction of web services
(WS1-WS5) from LSTM, and SimpleRNN models remained
close to our proposed GRU-100 model. There is no big MAE
(%) difference among three contenders with the typical deep
architecture, but still proposed GRU-100 has better perfor-
mance than others. High accuracy of GRU-100 model can be
attributed to the simple structure of model with a fewer gates.

Fig. 14. Prediction Accuracy of GRU-100, LSTM, and SimpleRNN models

Fig. 14 is the illustration of prediction accuracy comparion
of GRU-100 with LSTM, and SimpleRNN models. Accuracy
of both GRU-100, and LSTM models is shown very close
to each other from all web services datasets. On the other
hand, the performance accuracy of SimpleRNN model is lower
than GRU-100 model in the maximum cases of web services
datasets. From Fig. 5 we observed that WS2 showed devi-
ation in actual performance values. The SimpleRNN model
showed limitation while predicting the performance of WS2
as shown in Fig.14. It is concluded that the smaller deviation

in the actual values, the better prediction accuracy we obtain
from SimpleRNN model. However, LSTM and our proposed
GRU-100 model show better prediction accuracy for highly
performance fluctuating web services.

TABLE V
PREDICTION ERROR COMPARISON RESULTS OF GRU-200

Dataset GRU-200 LSTM SimpleRNN
WS1 1.41% 0.93% 1.93%
WS2 8.23% 8.29% 11.35%
WS3 0.39% 0.46% 0.40%
WS4 0.82% 0.77% 1.23%
WS5 0.33% 0.53% 0.23%

Table V is presenting accuracy comparison results of GRU-
200 with LSTM, and SimpleRNN models from WS1-WS5
web services with second scenario of 200 users.

Fig. 15. Prediction Accuracy of GRU-200, LSTM, and SimpleRNN models

Fig. 15 is the demonstration of performance accuracy
comparison of GRU-200 with LSTM, and SimpleRNN mod-
els. Similar to GRU-100 models’ prediction accuracy, our
proposed GRU-200 showed better accuracy for performance
prediction of WS1-WS5 web services datasets.

High prediction accuracy of GRU-100, and GRU-200 mod-
els for (WS1-WS5) datasets indicates that both of our proposed
GRU models perform better for a varying sequential data
of 30 time slices. We noticed that performance of GRU-
100, GRU-200, LSTM, and SimpleRNN for web services
with lesser changes in their actual values does not show a
high difference in prediction accuracies of above-discussed
models. This verifies that SimpleRNN model still works better
for the non-varying sequential data. This is why prediction
accuracy of SimpleRNN model has a slight edge in results over
GRU-100, GRU-200, and SimpleRNN models for WS3, and
WS5 web services datasets. However, GRU-100, and GRU-
200 models show a high prediction accuracy for web services
(WS1, WS2, and WS4) datasets.

Overall, it is concluded that GRU-100, and GRU-200 mod-
els have better position among other used models to address
the performance prediction of web services with the higher
deviation in their actual performance values. Of course, as
data from more time slices is added, the performance of
GRU-based models will be much better than SimpleRNN

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

104



and LSTM. Moreover, the ranking, and regression testing of
web services based on the performance prediction from GRU-
100, and GRU-200 models is highly effective in terms of
reduction in computation expense. Our proposed GRU models
are capable to store the hidden state information of web
services performance in the continuous valued memory.

V. CONCLUSION AND FUTURE IMPLICATIONS

This paper presents the novel web services performance
forecasting approach based on the implementation and applica-
tion of GRU model. This work provides valuable performance
prediction for ranking of web services. Moreover, GRU model
with the web services performance score retaining capability
in its memory has been verified on web services dataset. Based
on the results, web services performance can be improved by
using the ranking criteria for regression testing. Furthermore,
this study illustrates that efficient memory with a fewer gates
can bring more precision in performance prediction. Our
study also shows that performance accuracy metric MAE%
remained better for our proposed GRU-100, and GRU-200 in
comparison to LSTM and SimpleRNN models. The assertion
analysis of ranked web services helps in identifying the faults
in the web services. This work has implications for software
testers and managers to apply soft testing techniques after
predicting the short term performance of web services.

REFERENCES

[1] L. Mei, W. K. Chan, T. Tse, and R. G. Merkel, ”XML-manipulating test
case prioritization for XML-manipulating services,” Journal of Systems
and Software, vol. 84, no. 4, pp. 603-619, 2011.

[2] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, ”Prioritizing test
cases for regression testing,” IEEE Transactions on software engineering,
vol. 27, no. 10, pp. 929-948, 2001.

[3] B. Jiang, Z. Zhang, W. K. Chan, T. Tse, and T. Y. Chen, ”How well
does test case prioritization integrate with statistical fault localization?,”
Information and Software Technology, vol. 54, no. 7, pp. 739-758, 2012.

[4] A. Joseph and G. Radhamani, ”Hybrid Test Case Optimization Approach
Using Genetic Algorithm With Adaptive Neuro Fuzzy Inference System
for Regression Testing,” Journal of Testing and Evaluation, vol. 45, no.
6, pp. 2283-2293, 2017.

[5] Y.-D. Lin et al., ”Test coverage optimization for large code problems,”
Journal of Systems and Software, vol. 85, no. 1, pp. 16-27, 2012.

[6] A. Marback, H. Do, and N. Ehresmann, ”An effective regression testing
approach for php web applications,” in 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation, 2012, pp.
221-230: IEEE.

[7] D. Qiu, B. Li, S. Ji, and H. Leung, ”Regression testing of web service:
a systematic mapping study,” ACM Computing Surveys (CSUR), vol.
47, no. 2, p. 21, 2015.

[8] Z. Saoud, N. Faci, Z. Maamar, and D. Benslimane, ”A fuzzy-based
credibility model to assess Web services trust under uncertainty,” Journal
of Systems and Software, vol. 122, pp. 496-506, 2016.

[9] S. Deng, H. Wu, D. Hu, and J. L. Zhao, ”Service selection for
composition with QoS correlations,” IEEE Transactions on Services
Computing, vol. 9, no. 2, pp. 291-303, 2014.

[10] A. O. Ajayi, G. A. Aderounmu, H. A. Soriyan, and A. David, ”An
intelligent quality of service brokering model for e-commerce,” Expert
Systems with Applications, vol. 37, no. 1, pp. 816-823, 2010.

[11] J. Liu, M. Tang, Z. Zheng, X. F. Liu, and S. Lyu, ”Location-aware and
personalized collaborative filtering for web service recommendation,”
IEEE Transactions on Services Computing, vol. 9, no. 5, pp. 686-699,
2015.

[12] J. Heinermann and O. Kramer, ”Machine learning ensembles for wind
power prediction,” Renewable Energy, vol. 89, pp. 671-679, 2016.

[13] H. A. Kadhim and H. N. Nawaf, ”Improve the Accuracy of Dirichlet
Reputation System for Web Services,” in 2018 11th International Con-
ference on Developments in eSystems Engineering (DeSE), 2018, pp.
78-82: IEEE.

[14] A. Brunetti, D. Buongiorno, G. F. Trotta, and V. Bevilacqua, ”Com-
puter vision and deep learning techniques for pedestrian detection and
tracking: A survey,” Neurocomputing, vol. 300, pp. 17-33, 2018.

[15] Q. Dou, X. S. Zheng, T. Sun, and P.-A. Heng, ”Webthetics: Quantifying
webpage aesthetics with deep learning,” International Journal of Human-
Computer Studies, vol. 124, pp. 56-66, 2019.

[16] W. Geng, ”Cognitive Deep Neural Networks prediction method for
software fault tendency module based on Bound Particle Swarm Op-
timization,” Cognitive Systems Research, vol. 52, pp. 12-20, 2018.

[17] A. Al-Faifi, B. Song, M. M. Hassan, A. Alamri, and A. Gumaei, ”A
hybrid multi criteria decision method for cloud service selection from
Smart data,” Future Generation Computer Systems, vol. 93, pp. 43-57,
2019.

[18] M. Suchithra and M. Ramakrishnan, ”Efficient Discovery and Ranking
of Web Services Using Non-functional QoS Requirements for Smart
Grid Applications,” Procedia Technology, vol. 21, pp. 82-87, 2015.

[19] R. Gupta, R. Kamal, and U. Suman, ”A QoS-aware optimal selection
scheme for web services with a trusted environment,” CSI transactions
on ICT, vol. 3, no. 1, pp. 13-21, 2015.

[20] H. Liang and Y. Du, ”Dynamic service selection with QoS constraints
and inter-service correlations using cooperative coevolution,” Future
Generation Computer Systems, vol. 76, pp. 119-135, 2017.

[21] X. Su, M. Zhang, and Y. Mu, ”Trust-based group services selection in
web-based service-oriented environments,” World Wide Web, vol. 19,
no. 5, pp. 807-832, 2016.

[22] R. Mohanty, V. Ravi, and M. R. Patra, ”Web-services classification using
intelligent techniques,” Expert Systems with Applications, vol. 37, no.
7, pp. 5484-5490, 2010.

[23] Q. Mi, J. Keung, Y. Xiao, S. Mensah, and Y. Gao, ”Improving code read-
ability classification using convolutional neural networks,” Information
and Software Technology, vol. 104, pp. 60-71, 2018.

[24] R. Xiong, J. Wang, N. Zhang, and Y. Ma, ”Deep hybrid collaborative
filtering for Web service recommendation,” Expert Systems with Appli-
cations, vol. 110, pp. 191-205, 2018.

[25] H. Wang, Z. Yang, Q. Yu, T. Hong, and X. Lin, ”Online reliability time
series prediction via convolutional neural network and long short term
memory for service-oriented systems,” Knowledge-Based Systems, vol.
159, pp. 132-147, 2018.

[26] Y. Li, X. Nie, and R. Huang, ”Web spam classification method based
on deep belief networks,” Expert Systems with Applications, vol. 96,
pp. 261-270, 2018.

[27] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu, ”LSTM network: a
deep learning approach for short-term traffic forecast,” IET Intelligent
Transport Systems, vol. 11, no. 2, pp. 68-75, 2017.

[28] P. Roy, G. Mahapatra, P. Rani, S. Pandey, and K. Dey, ”Robust feedfor-
ward and recurrent neural network based dynamic weighted combination
models for software reliability prediction,” Applied Soft Computing, vol.
22, pp. 629-637, 2014.

[29] H. Turabieh, M. Mafarja, and X. Li, ”Iterated feature selection algo-
rithms with layered recurrent neural network for software fault predic-
tion,” Expert Systems with Applications, vol. 122, pp. 27-42, 2019.

[30] J. Liu, C. Wu, and J. Wang, ”Gated recurrent units based neural
network for time heterogeneous feedback recommendation,” Information
Sciences, vol. 423, pp. 50-65, 2018.

[31] S. Hochreiter and J. Schmidhuber, ”Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[32] K. Cho et al., ”Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[33] Z. Zheng, Y. Zhang, and M. R. Lyu, ”Investigating QoS of real-world
web services,” IEEE transactions on services computing, vol. 7, no. 1,
pp. 32-39, 2012.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

105




