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Abstract—Many applications rely on the local descriptors
extracted around a collection of interest points. Recently, the
security of local descriptors has been attracting increasing
attention. In this paper, we study the possibility of image
reconstruction from these descriptors, and propose a coarse-to-
fine framework for the image reconstruction. By resorting to our
gradually reconstructing network architecture, the novel multi-
scale feature map generation algorithm, and the strategically
designed loss functions, our proposed algorithm can recover the
images with very high perceptual quality, even partial descriptors
are provided only. Extensive experimental results are reported
to show its superiority over the existing algorithms. Our study
implies that the local descriptors contain surprisingly rich infor-
mation of the original image. Users should pay more attention
to sensitive information leakage when using local descriptors.

I. INTRODUCTION

Interest points of an image refer to those pixels with promi-
nent characteristics, which generally have many desirable
good properties, such as rotation invariance, robustness against
illumination changes etc. Finding interest points plays an
essential role in a wide range of feature extraction algorithms.
Among different types of local feature extraction approaches,
Scale Invariant Feature Transform (SIFT) [1] is one of the
most popular one and has been extensively investigated from
various perspectives. For each interest point, a corresponding
local descriptor can be generated by encoding its surrounding
information. It has been demonstrated that many local de-
scriptors, including SIFT ones, are of strong discriminability,
and excellently robust against geometrical transforms and
various kinds of noises. Local descriptors have been widely
employed in many existing high level vision tasks, e.g., image
recognition [2], image matching [3] and visual tracking [4].

Due to their popularity, the privacy and security issues re-
garding to the local descriptors have been attracting increasing
attention. For example, some recent studies demonstrated that
the SIFT features can be maliciously removed and forged,
making those decisions from SIFT-based systems untrust-
worthy [6], [7]. In this work, we consider another security
scenario, where the local descriptors may be eavesdropped by
malicious attackers in an insecure channel. Take the Content
Based Image Retrieval (CBIR) system as an example [8].
Users query interested images from one CBIR system by
simply passing the local descriptors through a public network.
The local descriptors then can be readily exposed to malicious
attackers when the channel is eavesdropped. Though the

Fig. 1: Reconstructed images of different methods from SIFT
descriptors. (a) original image, (b) SIFT descriptors, (c) result
of [5], and (d) ours.

descriptors extracted from the image only provide a summary
of its visual characteristics rather than its most informative
fragments, a pirate can still use them to interpret the image
content, and potentially causing sensitive information leakage.

In order to evaluate the risk of the information leakage from
local descriptors, it is necessary to know what kind of infor-
mation, and how much information are carried by the local
descriptors. A natural idea to this problem is to investigate
how much the latent content can be recovered through the
local descriptors. Along this line, several approaches have been
devised to reconstruct the images from local descriptors [9]–
[14]. The pioneer study on this problem was conducted by
Weinzaepfel et al. [9], who attempted to reconstruct the image
from its SIFT descriptors. Specifically, they first built up a
large patch database, then restored the image by simply pasting
and smoothing those searched patches with similar descriptors.
Further, with a certain degree of the user interaction, the color
information of the image could also be reproduced to some
extent. However, due the limited number of descriptors in one
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Fig. 2: The proposed coarse-to-fine framework. Training stage: after extracting the SIFT descriptors from the original image,
the pre-processing is performed to generate multi-scale feature maps. The network R is pre-trained to generate blurred images,
and finally a conditional adversarial network consisting of a generator G and a discriminator D, is concatenated to R and
perform an end-to-end training in terms of the designed weighted joint loss. Testing stage: feed the generated feature maps to
R and the generator G outputs the reconstructed image.

image, the algorithm [9] can only reveal some sharp structures
rather than the fine textures. By analyzing the property of
the local binary descriptors, Angelo et al. [10] proposed an
inversion algorithm tailored for the local binary descriptors
without using any external databases. Vondrick et al. [11]
addressed the problem of image reconstruction from the his-
tograms of gradient orientations (HOG) descriptors by using
the dictionary representation. Through estimating the spatial
arrangement of local descriptors over a large-scale image
database, Kato et al. [12] presented a method to reconstruct
the image from its Bag-of-Visual-Words (BoVW). Desolneux
et al. [13] devised two reconstruction models for local HOG
features. By adopting the Poisson editing, their methods can
recover global shapes and many geometric details of the
images without requiring any external databases. Recently,
some researchers also addressed the reconstruction problem
based on the neural networks, capitalizing on their powerful
representation capacity [5], [14]. Specifically, Dosovitskiy et
al. [5] proposed a reconstruction approach for several types of
local descriptors through a designed up-convolutional neural
network. Although the reconstructed images obtained by [5]
are substantially better than those of previous approaches, they
are very blurry and most of details are still missing.

Considering the drawbacks of the existing methods, in this
paper, we propose a new end-to-end face reconstruction model
from local descriptors based on the conditional adversarial
networks. Due to the space limit, SIFT descriptors are adopted
in our work. However, all the results can be readily extended
to other descriptors. As illustrated in Fig. 2, our framework
consists of three phases: 1) the multi-scale feature maps
generation; 2) the coarse reconstruction network; and 3) the
fine reconstruction network. First, the descriptors are pre-
processed to generate a set of feature maps at multiple scales.
Then, the feature maps are fed into the coarse reconstruction

network, which is pre-trained over a large database. As a well-
known fact, the local descriptor and the image patch do not
obey the one-to-one mapping, i.e., different patches could have
the same descriptors. This makes the coarse reconstruction
network often produce blurry outputs with global structures.
To reveal the fine details, we further propose to concatenate the
coarse reconstruction network with an appropriately designed
conditional adversarial network (named fine reconstruction
network), which takes the output of the coarse reconstruction
network as the input, and aims to recover a more realistic
image. Furthermore, in order to generate more visually pleas-
ing images, we strategically design two loss functions for the
coarse and fine reconstruction networks. As shown in Fig. 1,
most of the facial details can be recovered by our approach,
even in those areas where no SIFT keypoint exists. Compared
with the other algorithms, our reconstructed image achieves
substantially better perceptual quality. More results will be
given in the experimental stage.

The rest of this paper is organized as follows. In Section
II, we briefly review the conditional adversarial networks.
Section III discusses our proposed reconstruction algorithm.
Extensively experimental results are reported in Section IV,
and we finally conclude in Section V.

II. REVIEW OF CONDITIONAL ADVERSARIAL NETWORKS

Generative adversarial networks (GANs) proposed in [15]
define a minimax game between two competing networks,
i.e., the generator G and the discriminator D. The generator
G : z → y takes a random noise z as input, and then generates
a sample y. The discriminator D tries to distinguish the real
samples and generated samples. During training, the generator
G and the discriminator D are competing with each other,
finally making the generator G to produce samples indistin-
guishable from the real ones. In addition, when the generator
and discriminator are conditioned on some extra information
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x, then GANs are extended to the conditional generative
adversarial networks (cGANs) [16]. The extra information x
could be any kind of auxiliary information, e.g., the class label
or an image. The cGANs are driven by feeding x into G and
D as additional input layers. Typically, the objective function
of cGANs can be expressed as

LcGAN (G,D) =Ex,y[logD(x, y)]+

Ex,z[log(1−D(x,G(x, z)))],
(1)

where G∗ = arg min
G

max
D

LcGAN (G,D). Note that the net-
work could still learn a mapping from x to y without z, but
would produce deterministic outputs. In recent years, cGANs
have been widely studied in many vision tasks, e.g., image-to-
image translation [17]. For more details about cGANs, please
refer to [16].

III. PROPOSED METHOD

With only the SIFT descriptors extracted from the original
image Io, the proposed method aims to reconstruct an image
Ir, which should be similar to Io. As shown in Fig. 2, our
framework works in a coarse-to-fine manner, and contains
three phases: 1) multi-scale feature maps generation; 2) coarse
image reconstruction, and 3) fine image reconstruction. All the
details regarding to these three components will be given in
the following subsections.

A. Multi-scale Feature Maps Generation

Note that the SIFT descriptors are a collection of vectors,
and the number of descriptors are also highly varied from
different images. This makes it impossible to directly feed the
descriptors into a network for training. In the first stage, we
propose to rearrange the SIFT descriptors of an image as a
set of feature maps, which can accommodate the input of the
coarse image reconstruction component.

The original SIFT detector works only for grayscale images.
For each color image with RGB channels, we first transform
it into the grayscale domain by using a function T = (Γ(R)+
Γ(G) + Γ(B))/3, where Γ(t) = t1/2.2 is standard gamma
correction function [19]; R, G and B respectively denote
the red, blue and green channels. For each corresponding
grayscale image, SIFT algorithm is applied to generate a set
of keypoints {k1, ...,kn} and their corresponding descriptors
{v1, ...,vn}, where each descriptor is an 128-dimensional
vector. For the i-th keypoint, ki is represented as a four
dimensional vector

ki = (xi, yi, σi, θi). (2)

Here, (xi, yi) are the coordinates in the image plane, σi serves
as the scale, and θi is its dominant orientation.

For each image, we then generate the feature maps by
rearranging its descriptors in different manners. Note that the
SIFT descriptor vi contains 16 histograms with 8 bins, where
each histogram encodes the information on the 4 × 4 pixel
neighborhoods. This inspires us to restore a small local area
centered at each keypoint according to its descriptor. Similar

Fig. 3: Proposed architectures of R and G. Conv(α, β, γ)
means a convolution layer with α filters, kernel size β and
stride γ. Up denotes up-sampling operator. BN serves as the
batch normalization. ReLu represents the rectified activation
and L is LeakyReLu.

to [5], we propose to divide the image into cells of the size
d × d (d = 4), which yields totally dW/de × dH/de cells.
Then each cell is assigned by a descriptor vi based on its
coordinates (xi, yi). Empty vectors are assigned to those cells
without any keypoints. In some cases, there may exist more
than one descriptors in a single cell, then we propose to
place the additional descriptors in the adjacent empty cells.
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Using above strategy, we finally can generate a feature map
Fd ∈ RdW/de×dH/de×128 for each image.

It should be noted that the number of features is fixed for
a given image; then a small d will lead the descriptors to
distribute very sparsely in the feature map. This makes the
training of the network unstable since most of the cells are
empty vectors. On the other hand, a large d will let many
descriptors highly clustered, potentially losing fine details due
to the interactions among different descriptors. To tackle this
problem, we propose a multi-scale feature maps generation
strategy as shown in Fig. 2. Specifically, with different settings
of d, we can generate a set of feature maps at different scales.
For simplicity, denote Fd=x as the feature map resulted by
setting d = x. In our experiments, we find that using feature
maps generated by d = 4 and d = 2 can well balance
the performance and model complexity. Then the multi-scale
feature maps can be represented as

F = {Fd=2, Fd=4}. (3)

As will be clear in the experimental stage, our proposed multi-
scale feature maps generation strategy can greatly improve the
quality of the reconstructed images.

B. Coarse Reconstruction Network

The architecture of our proposed coarse reconstruction
network R is illustrated in Fig. 3. As can be seen, the network
R consists of two subnetworks, which take the feature maps
at different scales as the input. The outputs of these two
subnetworks are averaged in the final layer to generate an
intermediate image of the same size as the original one. The
left subnetwork has 10 convolution layers. The beginning
4 convolution layers with stride 2 are designed to extract
both the local and global information of the feature map.
Then 6 deconvolution layers are concatenated to interpret the
information as an image of the same size as the original one. In
our experiment, we adopt an up-sampling layer followed by a
convolution layer with stride 1 to implement deconvolution
operations. The number of kernels and the kernel size of
each layer list in Fig. 3 are carefully tuned to achieve the
best performance. Each convolution layer (except the last
one) is followed by a BatchNormalization layer [29] and the
LeakyReLu activation layer [30] with α = 0.2. Similarly, we
design the right subnetwork with 11 convolution layers, which
takes the feature map with d = 2 as its input.

The loss function for R can be naturally defined in a `2
sense. Mathematically,

L2,R = E
[
||Io −R(F )||2

]
, (4)

where the expectation is calculated over all the training images
{Io}, and F is the collection of feature maps, which is defined
in (3). We experimentally find that the `2 loss often causes
the results highly blurred, thus losing many details. Fig. 4
shows an example, where we can observe that `2 loss fails to
restore the details in the facial region. To tackle this problem,
in addition to `2 loss, we further introduce two losses, i.e.,
perceptual loss [22] and style loss [23].

Fig. 4: Results of the network R with different loss functions.
From left to right: original image, `2 loss function and our
proposed loss function.

As the name suggests, perceptual loss penalizes results that
are not perceptually similar to original image, which can be
defined as

Lp,R = E
[
||ϕ(Io)− ϕ(R(F ))||2

]
, (5)

where ϕ in our work is chosen as the activation map of the
3-th layer of the pre-trained VGG16 network on ImageNet.
On the other hand, the style loss is used to measure the
differences between covariances of the activation maps, which
is an effective strategy to eliminate “checkerboard” artifacts
cased by deconvolution layers [24]. Typically, the style loss
can be defined as

Ls,R = E
[
||Mϕ(R(F ))−Mϕ(Io)||1

]
, (6)

where Mϕ is a C × C Gram matrix constructed from the
activation map ϕ.

Finally, we define the loss function for R as the combination
of above three losses

LR = L2,R + λpLp,R + λsLs,R. (7)

In our paper, we call above loss as the weighted joint loss,
where we empirically set λp = 1 and λs = 1e−4.

As shown in Fig. 4, our proposed weighted joint loss sub-
stantially improves the reconstruction results of the network
R. Compared with the traditional `2 loss, the proposed loss
function helps to reveal much more fine structures.

C. Fine Reconstruction Network

We build the fine reconstruction network as a conditional
adversarial network, which consists of two components: a
generator G and a discriminator D. For the generator G, we
adopt a similar structure design as proposed in [25], which
contains 2 convolution blocks with stride 2, 9 ResBlock [26]
and 2 deconvolution blocks. Each ResBlock is comprised of
a normalization layer, ReLu [27] activation and a convolution
layer. Dropout [28] regularization is adopted with a probability
0.5 in every ResBlock to prevent overfitting. A global skip
connection introduced in [25] is employed to make the training
faster. The whole architecture of G is shown in the bottom
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Fig. 5: Reconstruction results of different algorithms. First row: original images. Second row: results of [5]. Bottom row:
results of ours.

of Fig. 3. For the discriminator D, we simply adopt a same
architecture as proposed in [17]. Interested readers are invited
to see [17] for more details.

For the loss function of G and D, besides the adversarial
loss defined in (1), we also add the `2 loss, perceptual loss
and style loss, which can be similarly defined as (4), (5) and
(6), respectively. The final loss function of G and D then can
be written as

LGD = LcGAN + λ`2L2,G + λpLp,G + λsLs,G. (8)

In our experiment, we set λ`2 = λp = 100 and λs = 0.01.

D. Model Training and Inference

Our model is implemented using the Keras deep learning
framework [31]. The training procedure is performed on a
desktop equipped with a Core-i7 and a single GTX 1080 GPU.
To stabilize the training process and alleviate the gradient
vanishing problem, we first train the network R on the training
set until convergence. Then we concatenate fine reconstruction
module to R, and perform an end-to-end training over R, G
and D simultaneously. Adam algorithm [32] is adopted in
optimization, where we set β1 = 0.9, β2 = 0.999, the learning
rate r = 10−4, and the batch size is equal to 8. We perform
5 times weights updates on D, then one on R and G. Our
model reaches convergence after about 200 training epochs.

At the inference stage, we discard the discriminator D in
the Fig. 2. Given the descriptors of one image, the generator
G directly outputs the predicted image.

IV. EXPERIMENTS

This section provides extensive experimental results to
evaluate our proposed reconstruction framework.

A. Datasets

The CelebFaces Attributes Dataset (CelebA, [33]) is
adopted in our experiment, which is a large-scale face at-
tributes dataset containing over 200K celebrity images. We
randomly select 8,000 facial images for training and another
1,000 images of different identities are selected for testing.
We experimentally find that more training images makes little
improvement on the final results. For each selected image, we
extract the largest square area at the center, and then rescale
it to the size 256× 256.

B. Reconstruction Results

Fig. 5 depicts the reconstruction results of five images.
The reconstructed images obtained by the algorithm [5] are
also reported for comparison. Note that the method [5] is
also based on deep networks. Due to the space limit, we
do not compare with other previous approaches, such as [9],
[13]. However, readers are invited to see the results shown in
their papers, where the reconstructed images are far from real
images. As can been seen from Fig. 5, our method can recover
most of details. Compared with [5], the proposed algorithm
substantially improves the reconstructed images, including
both the facial areas and those highly textured regions (e.g.,
hair and beard). Due to the powerful learning ability of the
conditional adversarial networks, we can also note that the
colors of skin are also restored to some extent through our
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(a) (b) (c)

Fig. 6: Reconstruction results of different architectures. (a):
original image, (b) result obtained with a single feature map
(d = 4), and (c) result obtained by our proposed architectures.

Fig. 7: Image reconstruction from partial descriptors. Left:
SIFT descriptors (the middle ones are removed manually).
Right: reconstruction result.

Fig. 8: Reconstruction results using 8 categories from Im-
ageNet. First row: original images, and second row: recon-
structed images.

framework. Our results demonstrate that the SIFT descriptors
contain surprisingly rich information of the original image.

To discuss the benefit of our proposed multi-scale feature
maps generation strategy and the parallel architecture design
of the network R, we also report the results obtained based
on a single feature map. The image shown in Fig. 6 (b) is
obtained by using a single feature map with d = 4. We
can observe that Fig. 6 (b) introduces many blurred artifacts,
and the reconstructed image is much worse than that of our
proposed method (shown in Fig. 6 (c)). This demonstrates that
our proposed multi-scale architecture indeed helps for image
reconstruction.

In addition, we also evaluate the robustness of our proposed

framework. In some cases, the attacker may only obtain a part
of descriptors. Unfortunately, even under this scenario, most
of the information could still be potentially recovered. One
example is shown in Fig. 7, where we manually remove the
descriptors in a local region of the face. We can see that many
details in that region can still be reconstructed using only the
remaining descriptors.

C. Limitations

Although our model generally can generate facial images
with very high perceptual quality, we discuss some limitations
in this subsection.

First, we experimentally find that the facial regions are
recovered much better than the other areas, such as hair
and background. The underlying reasons can be two-fold: 1)
for those highly textured regions (e.g., hair), the descriptors
may not enough to encode their texture information; 2) the
conditional adversarial networks mainly focuses on the facial
regions rather than the other areas. In this case, those generated
images with blurred hair or background may not be rejected
by the discriminator.

Second, the current model is tailored for facial images
reconstruction. Extending our model to multiple categories is
not straightforward. To demonstrate this problem, we train our
framework using 8 categories with totally 8,000 images from
ImageNet dataset. Fig. 8 shows that the reconstructed images
are very blurry. We think that this phenomenon is caused by
the following two aspects: 1) the number of training images
for each category is not enough; 2) currently, the discriminator
is designed to distinguish the generated images from real ones,
totally ignoring their categories. One potential solution is to
re-design the discriminator, forcing the generator to produce
an image of a certain category. This can be an interesting
problem that we will investigate in the future.

V. CONCLUSIONS

In this paper, we have proposed a novel end-to-end face
reconstruction model from local descriptors based on the con-
ditional adversarial networks. Our model works in a coarse-
to-fine manner. By resorting to the well designed multi-
scale feature maps generation algorithm and the conditional
adversarial networks, our approach has substantially improved
the reconstruction results compared with existing ones. Ex-
tensive experimental results are provided to demonstrate its
superiority. An implication of our study is that users should
pay more attention on the privacy issues when using local
descriptors, as they contain surprisingly rich information of
the original image. If the local descriptors (even a part of
them) are obtained by illegal users, the sensitive information
can be leaked in a high probability.
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