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Abstract—Recently x-vector has achieved a promising per-
formance of speaker verification task and becomes one of the
mainstream systems. In this paper, we analyzed the feature
engineering based on the x-vector structure, and proposed a
multi-feature integration method to further improve the feature
representation of speaker characteristic. The proposed multi-
feature integration method could be implemented in two ways,
with the symmetric branches and the asymmetric branches,
respectively, to incorporate different types of acoustic features
in one neural network. While each branch processed one type
of acoustic features on the frame level, the outputs of the
two branches for each frame were spliced together as a super
vector before being input into the statistics pooling layer. The
experiments were executed on the VoxCeleb1 data set, and
the results showed that the proposed multi-feature integration
method obtained a 22.8% relative improvement over the baseline
in EER value.

Index Terms: speaker verification, x-vector, multi-feature,
feature engineering

I. INTRODUCTION

Feature engineering is a critical segment in an automatic
speaker verification (ASV) system, which aims to capture
internal characteristic of speaker identities with speech ut-
terances. In the past decades, the raw acoustic features such
as Mel frequency cepstral coefficients (MFCC) [1] and per-
ceptual linear prediction (PLP) [2] were widely utilized to
represent the speaker’s characteristic parameter vectors. With
such acoustic features, statistical models, such as GMM-UBM
(Gaussian mixture model - universal background model) [3],
were built to verify the speaker identities. On the other hand,
the channel-dependent statistic representations, i-vector [4],
would be obtained as well to map variable-length utterances
into fixed-length vectors.

Recent years, deep learning based algorithms have merged
increasingly. Y. Lei et al. [5] proposed DNN i-vector by
introducing phonetic information into the i-vector model with
a DNN model. Then E. Variani et al. [6] introduced em-
beddings concept into ASV task by using a neural network
to extract discriminative vectors of speakers called d-vector.
Soon after, deep feature [7] has been proposed to extract
more informative speaker characteristics related embeddings
and recurrent neural networks (RNN) [8], convolutional neural
networks (CNN) [9] have been proposed to build an end-to-
end speaker verification system. Inspired by [6], a significant
breakthrough has been made known as x-vector [10] which

was based on a time delay neural network (TDNN) [11] and a
statistics pooling layer. The ’NIST Baseline Systems for 2018
Speaker Recognition Evaluation’ [12] released from NIST
contained the x-vector as one of baseline systems (another
was the i-vector). Lately, D. Snyder et al. [13] used data
augmentation to improve the robustness of x-vector and K.
Okabe et al. [14] modified the statistics pooling layer of x-
vector framework. What should be noted is that most neural
networks mentioned above are based on single acoustic feature
such as MFCC.

However, during the MFCC computation, some details were
discarded with the compression of Mel filter banks and discrete
cosine transform (DCT). Those discarded information may
be advantageous in some tasks. To deal with such issues, it
is common to train manifold systems by different kinds of
acoustic features such as MFCC and FBank, and then make
score fusion to achieve a better performance [15].

In this paper, we propose the a multi-feature integration
method to utilize complementary acoustic features into a
single x-vector system, which would extract more speaker
discriminative information from raw speech. We realized two
input network branches to process two kinds of acoustic
features respectively, and the outputs of the branches were
spliced together on frame level before the statistics pooling
layer. These input network branches could have the same
structure, named as the symmetric branches, or even various
types of neural network structures (such as TDNN and ResNet
[16] ), named as the asymmetric branches, to learn more
complementary representation.

The contributions of our work are as follows:
1. Exploring the potential of utilizing multi-feature to im-

prove the single ASV system’s performance.
2. Discussing the integration strategy, especially on which

layer it would be better to execute the multi-feature integration
between two input network branches.

3. Investigating the feasibility of the combination of various
types of deep neural networks for different acoustic features.

The rest of this paper is organized as follow: Section 2
describes some technologies related to our work and Section
3 reveals the details of the proposed multi-feature integration
methods. Section 4 introduces the experimental settings and
Section 5 discusses the results. Finally, Section 6 concludes
the paper.
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II. RELATED WORK

This section demonstrates the related works of taking ad-
vantage of acoustic features more effectively in ASV task.

K. S. R. Murty et al. [17] indicated that there were some
information missed, named the residual phase, in comparison
with the information presented in the conventional MFCC. To
tackle this problem, they proposed an algorithm with LP to
capture residual phase as an additional feature. Systems that
they built on residual phase feature performed far worse than
systems on conventional MFCC, but after the fusion of two
systems, the better EER was obtained.

Z. Li et al. [18] presented a method to utilize complementary
acoustic features by concatenating multiple features to attain
a new feature and implemented the ASV system with GMM-
UBM [3]. To reduce the dimensions of the new combined
feature and to avoid redundancy after combination, LDA and
feature-domain latent factor analysis (fLFA) were used.

S. Yaman et al. [19] introduced a bottleneck feature extrac-
tion model which performed slightly worse than MFCC but it
was complementary in score-level fusion. M. McLaren et al.
[20] proposed the tandem feature based on the combination
of bottleneck feature and basic acoustic feature to improve
the performance of i-vector.

The ASVspoof2019 officially [21] revealed the baseline
systems with two kinds of features (LFCC [22] and CQCC
[23]) and two baseline systems shared a same GMM classifier.
The results given show that two features have advantages in
different attack tasks. Due to the complementary of acoustic
features in ASVspoof, we explored multi-feature integration
and multi-task learning [15] in the challenge and achieved
comprising results. However in [15], we only implemented
the proposed symmetric branches with the 5th hidden layer as
the stitching layer and no attempts were completed on ASV
task. In this paper, we further analyze the potentiality of multi-
feature in the speaker verification task.

The works aforementioned indicated that training a speaker
discriminative information extractor with only one kind of a-
coustic feature is not enough and it is necessary to compensate
information discarded in single acoustic feature.

III. MULTI-FEATURE INTEGRATION STRUCTURES

The proposed multi-feature integration structures are based
on the mature x-vector system without tedious modification but
it could compensate the omitted details in acoustic features. In
this paper, we chose MFCC and FBank feature as the combi-
nation of multi-feature due to they are different in processing
completeness. The presented multi-feature integration strctures
could be used in other complementary feature combinations
such as MFCC and PLP.

The most straightforward approach to apply multi-feature is
concatenating features directly as the input data of the x-vector
system which is shown in Fig 1. We name this structure as
the direct integration structure. The appending process could
be written as:

xnew ← Append(xMFCC , xFBank) (1)

Fig. 1. The processing of concatenating multi-feature

where xMFCC ,xFBank represent the feature matrix of MFCC
and FBank respectively, and xnew represents the concatenated
feature’s matrix.

Considering the data distribution of different features is
comparatively dissimilar and the information between features
is complementary, we proposed a multi-feature integration
structure as shown in Fig. 2. In this structure, two different
acoustic features extracted from the same speech segment
are sent into two independent neural network branches. We
use T1 (·), T2 (·) to represent the computaion in the TDNN
block for MFCC and for FBank respectively. The initial
configuration of two branches for two acoustic features are
strictly the same except the input dimensions, which is named
as the symmetric branches. So after training, T1 (·), T2 (·) still
remain high similarity in activation logic. Then T1 (·) and
T2 (·) are stitched in a fully connected layer S (·), named
stitching layer, before being sent into the statistics pooling
layer. Considering that there may be several hidden layers
after the stitching layer, we use the stitching block to represent
the stitching layer and the hidden layers between the stitching
layer and the statistics pooling layer. The mathematical relation
in stitching block could be written as:

ynew = S(T1(xMFCC) + T2(xFBank)) (2)

By doing so, two neural network blocks will separately learn
unique information from various acoustic features. Further-
more, assigning different specific hidden layer as the stitching
layer could lead to various performance in specific databases.
So we experimented different hidden layer to be the stitching
layer.

On the other hand, each kind of features may be fitted with
its own best-matched neural network structure due to distinc-
tive information. So we proposed another more distinguishable
architecture in which two features are processed by two
different kinds of network branches to learn complementary
information. In this paper, the structure consists of TDNN and
ResNet neural networks was explored, which was name as
the asymmetric branches. In Figure 3, T (·) , R (·) represent
the computation of TDNN block for MFCC and ResNet
block for FBank, respectively. We used the FBank feature
which contains more original knowledge as ResNet block’s
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Fig. 2. The multi-feature integration with the symmetric branches

input, because the ResNet is expert at handling original and
complex information. The mathematical relation in stitching
block could be rewritten as:

ynew = S(T (xMFCC) +R(xFBank)) (3)

After training, the output of the penultimate hidden layer is
extracted as speaker embedding (x-vector). Mean subtraction,
length normalization, LDA and PLDA would be applied to
speaker embeddings in sequence.

IV. EXPIMENTAL SETTINGS

For the purpose of exploratory experiment, all the concep-
tions aforementioned were only implemented with MFCC and
FBank, but it is also the same for the other different features or
even with more than two kinds of features. All the experiments
were executed on Kaldi toolkit [24].

A. Database

The VoxCeleb 1 [25] training data set was utilized as
our training set and the VoxCeleb 1 test data set was used
to evaluate the models. Before training, we used the same
data augmentation algorithm as Kaldi’s recipe1 to expand the
training data. We randomly chosen 140,000 noisy utterances
and mixed them with the original training data.

B. Baseline systems

The baseline x-vector systems based on TDNN were iden-
tical with Kaldi’s official recipe, using one kind of acoustic
features, respectively. The baseline x-vector systems based
on ResNet used the typical ResNet configuration and the
number of ResNet block’s hidden layers were the same as the
systems based on TDNN. The 30-dimensional MFCC and 40-
dimensional FBank were used as input acoustic features with
a frame shift of 10ms and a frame length of 25ms. CMVN

1egs/voxceleb/v2

Fig. 3. The multi-feature integration with the asymmetric branches

with a 3-second window and energy-based VAD were applied.
The backend was also the identical as what’s in the Kaldi’s
recipe. Mean subtraction, length normalization were applied
to x-vectors and then the vectors dimensions were reduced
to 200 with LDA. The 200-dimensional vectors were used to
train the PLDA model, on which the final verification scores
were obtained.

C. Proposed systems

The settings in the direct integration structure was the same
as Kaldi’s official recipe except for the input feature was an
new feature concatenated by MFCC and FBank.

The configuration in the multi-feature integration with sym-
metric branches could be regarded as the bifurcated structure
of the baseline x-vector systems before the stitching layer.

Meanwhile, the configuration before the stitching layer in
the multi-feature integration with asymmetric branches could
be considered as the bifurcated structure with TDNN and
ResNet. Moreover, the settings before the statistics pooling
layer were the same as the parameters of TDNN for MFCC
or those of ResNet for FBank.

The backend process in experiments were the same as the
baseline systems.

V. RESULTS

The results of the baseline systems and the proposed system-
s are reported in Table 1, including the evaluation metrics of
minDCF08 (p-target=0.01), minDCF10 (p-target=0.001) and
equal error rate (EER).

Given the single kind of acoustic feature, TDNN with
MFCC outperformed the same network structure with FBank.
In contrast, ResNet with FBank obtained better performance
than ResNet with MFCC. It is obvious to find out that TDNN
with MFCC and ResNet with FBank would be the appropriate
configurations, of which the former one is abbreviated as the
baseline 1 and the latter one as the baseline 2.
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TABLE I
THE RESULTS OF SYSTEMS ON VOXCELEB 1

No. System Details EER(%) minDCF08 minDCF10
01 x-vector only MFCC (baseline 1) 4.67 0.4479 0.5496
02 x-vector only FBank 5.35 0.4693 0.6402
03 ResNet only MFCC 6.46 0.5584 0.7554
04 ResNet only FBank (baseline 2) 4.51 0.4418 0.4956
05 direct integration structure - 4.67 0.4256 0.5304
06 symmetric branches stitching layer @ 5th 4.40 0.4554 0.5706
07 symmetric branches stitching layer @ 4th 4.22 0.4241 0.4933
08 symmetric branches stitching layer @ 4th (fine-tuning) 3.70 0.3582 0.4256
09 symmetric branches stitching layer @ 3th 4.31 0.4082 0.5704
10 symmetric branches stitching layer @ 2th 4.39 0.4044 0.5081
11 asymmetric branches fine-tuning 3.48 0.3681 0.4566
12 fusion 1+2 Equal weight fusion 4.19 0.3990 0.5706
13 fusion 1+4 Equal weight fusion 3.81 0.3776 0.5003
14 fusion 1+2+8 Equal weight fusion 3.48 0.3365 0.4817
15 fusion 1+4+11 Equal weight fusion 3.38 0.3331 0.4939

We also implemented the direct integration system, and the
result of the direct integration structure showed that merely
combining various features as an new feature for x-vector can
scarcely improve the performance.

For the symmetric branches based systems, we analyzed
that how the stitching layer affected the performance. In our
experiments on the VoxCeleb 1 dataset, the fourth hidden
layer before the statistics pooling layer would be the best
choice as the stitching layer, while with a relative reduction
of 6.3% in EER compared to the baseline 2. With fine tuning,
the symmetric branches based system obtained an optimized
performance of 3.70% in EER value, which was better than
that of score fusion between the baseline 1 and the baseline
2.

For the asymmetric branches based system, the best per-
formance was achieved with 22.8% relative improvement in
comparison with the baseline 2. This result indicated that the
proposed asymmetric branches would learn more beneficial
details in raw acoustic features and magnify the differences
between speakers, and each branch network could expolit
its own relevant feature more efficiently. Furthermore, we
compared the score fusion strategies with different systems.
With the equal weighted fusion parameters, the score fusion
of system 1, system 4 and system 11 gained the promising
performance of 3.38% in EER value, which was nearly 25%
relative improvement in contrast with the baseline 2.

VI. CONCLUSIONS

In this paper, we present two speaker embedding extractors
with multi-feature integration structure. The multi-feature inte-
gration models could be jointly trained with different features
to learn complementary and auxiliary information. The best
result is 22.8% relative better in EER than the best baseline
on VoxCeleb 1. Our experiments illustrated the effectiveness

of the proposed multi-feature integration method and achieved
the promising improvement from score-level fusion at last.

In the future, we will try to optimize the network learn-
ing strategies by modifying different loss functions for each
feature.
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