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Abstract—Many methods evaluate the similarity between two
vectors xxx and yyy by norm or metric learning. They need to get a
subtraction vector xxx − yyy and then evaluate its length. However,
only considering the length of subtraction vector and ignoring
its position may lost a lot of information. In this paper, we
propose to utilize the position information of subtraction vector
to evaluate the similarity. As the subtraction vector between xxx
and yyy can be expressed either by xxx−yyy or by yyy−xxx, its distribution
is centrosymmetric and redundancy. Thus, only half of the
subtraction vectors are chosen and named as subtraction positive
vectors. The subtraction positive vectors from different classes
or from the same class are then modeled by Gaussian mixture
models or deep neural network. Experiments were carried out
on speaker verification databases including NIST SRE08, SRE10
and NIST i-vector challenge 2014. Results demonstrate the
effectiveness of the proposed method.

I. INTRODUCTION

The task of speaker recognition is challenging, because
speaker, language and content information are highly corre-
lated and easily influenced by communication channel and
background noise. A basic text-independent speaker verifica-
tion system includes four parts: front-end processing, feature
extraction, statistical modeling and score calibration [1].

After front-end processing and feature extraction, an ut-
terance is transformed into a cepstral feature sequence to
build statistical model. Gaussian mixture model (GMM) [2],
deep neural network (DNN) [3], [4] and their variants are
often adopted. Recently, DNN related algorithms become
mainstream. Roughly speaking, there are three ways of using
DNN.
• Yun Lei has used an ASR DNN acoustic model to extract

phonetic Baum-Welch statistics [4]. This method allows
comparison of speakers in the same pronunciation unit.
Reported experiments on the NIST SRE English database
also demonstrate good results. However, this method has
a significantly increased computational burden and fails
in a multi-language setting.

• Another approach is end-to-end speaker verification [5].
Following this pioneer work, various end-to-end methods
are emerging., including attention model [6], ResCNN
[7], LSTM[8], GRU [7] and triplet loss and [7], [9]. Com-
pared with previous methods, the end-to-end approach
simplifies system design and is very effective for short
utterances. Yet, for the long duration text-independent
speaker verification task, the traditional i-vector-PLDA
is more competive.

• A third approach is the Xvector [10]. This can be seen as
a tradeoff between the traditional Ivec-PLDA and the end-

to-end method. The DNN is solely designed to extract
embeddings and the decision task is left to the backend
classifier. Because of its excellent performance in recent
NIST SRE 2016, 2018 and its simple implementation
using the Kaldi toolkit [11], Xvector has become more
and more popular.

After building the statistical model, a similarity function is
implemented. There are two dominant approaches:
• Likelihood ratio function. In this case, the estimated

statistical model from the training utterance is used
as the model to score the test utterance. Examples of
this approach include GMM-UBM, latent factor analysis
(LFA) [12] and joint factor analysis (JFA) [13], [14].

• Comparison of vectorized parameters. Here, the statistical
models are characterized by their estimated parameters,
which are often arranged in a vector form. The backend
classifier often does not consider the physical meaning of
these parameters and only take them as raw input vectors.
Because of this, general machine learning methods can be
directly applied , including such techniques as principle
component analysis (PCA), linear discriminant analysis
(LDA) [15] and probabilistic linear discriminant analysis
(PLDA).

The task of distinguishing easily confusable speakers is still
challenging [16] in this field. Speaker verification errors often
occur in the case that the target speaker and mis-identified
speaker are similar in phonetic pronunciation, speaking style,
and word usage. Motivated by this problem, we propose a
subtraction positive similarity learning (SPSL) to boost the
system performance.

The remainder of the paper is as follows. Section II formu-
lates the mathematical problem of text-independent speaker
recognition. In section III, the subtraction positive similarity
learning is proposed and discussed. Experimental work on the
NIST SRE08, SRE10 and SRE14 is presented in section IV.
Finally, a summary is given in section V.

II. MATHEMATICAL PROBLEM OF TEXT-INDEPENDENT
SPEAKER VERIFICATION

The core task of text-independent speaker verification using
cepstral feature sequences can be reformulated as follows.
Given the training data

Otrain = {oootrain,1, oootrain,2, · · · , oootrain,Ttrain},

and the test data

Otest = {oootest,1, oootest,2, · · · , oootest,Ttest},
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where O is the acoustic feature sequence and T is the time
duration. Our task is to find a proper function S(·, ·) which
satisfies

S(Otrain, Otest) > η,

Otrain and Otest are from the same speaker.
S(Otrain, Otest) ≤ η,
Otrain and Otest are from different speakers.

where η is a threshold. Since each speaker can be depicted by
its statistical model f , we first estimate f and then compare
the estimated f̂ . We consider the property of an ideal function
from the perspective of information theory [17]. Let θ denote
the parameters of f̂ , I(·; ·) denote the mutual information and
H(·) denote the entropy. The mutual information matrix is[

I(θtrain; θtrain) I(θtrain; θtest)
I(θtrain; θtest) I(θtest; θtest)

]
.

Since I(θtrain; θtrain) = H(θtrain) ≥ I(θtrain; θtest) ≥ 0 and
I(θtest; θtest) = H(θtest) ≥ I(θtrain; θtest) ≥ 0, the above
similarity matrix is a symmetric positive semidefinite matrix.
From the Mercer theorem [18], we know that the ideal function
can be solved in a high dimensional space called a reproducing
kernel Hilbert space (RKHS) [19] and can be expressed as

S(θtrain, θtest) =< φ(θtrain), φ(θtest) > (1)

where φ(θ) is a mapping and < ·, · > is an inner product in the
RKHS. Prior to considering the realization of φ(·), we focus
on strengthening the desired information and removing nui-
sance information. This can be accomplished by introducing
a symmetric positive semidefinite Q matrix

S(θtrain, θtest) =< φ(θtrain), φ(θtest) >

= φ(θtrain)tQφ(θtest)
(2)

This equation shows that there are three components (f , φ and
Q) to be solved for the verification task. Here, f represents
statistical modeling which is not the focus of this paper and
we will study a kind of φ and Q in the next section.

III. SUBTRACTION POSITIVE SIMILARITY LEARNING

We begin with the classical metric learning approach which
looks for a symmetric Q, Q � 0 satisfying that the metric
distance L(xxxa,xxxb) = (xxxa − xxxb)tQ(xxxa − xxxb) is less than a
threshold η if xxxa and xxxb are from the same class and is greater
than η if xxxa and xxxb are from different classes at the same time.
Considering this problem from the view of geometry, we are
looking for an ellipse in a multi-dimensional variable space.
In the ideal case of metric learning, the same class subtraction
vectors zzzab = xxxa − xxxb are mapped inside the ellipse and the
different classes subtraction vectors are mapped outside the
ellipse, as shown in the upper figure in Fig. 1. Yet, this is
not the case in many applications. For the lower figure in
Fig. 1, metric learning fails to find a proper oval contour to
distinguish circles and triangles. However, the pattern between
circles and triangles is clear and can be recognized. Classical
metric learning fails because it only concerns quadratic term
while ignoring the position of subtraction vectors.

If we study the Fig. 1 carefully, we will find that it is
centrosymmetric because zzzab = xxxa − xxxb and zzzba = xxxb − xxxa
are opposite vectors. zzzab and zzzba are redundant and we use a
simple rule 111tzzz > 0 to select zzz, denoted as subtraction positive
vectors (SPV) zzz+. There are two types of SPVs: the same class
SPVs (Both subtrahend and minuend are from the same class,
SCSPVs) and different classes SPVs (Subtrahend and minuend
are from the different classes, DCSPVs). For SCSPVs, we use
a GMM [κS , µS ,ΣS ] to model them

LS(zzz+) =
1

|S|
∑
zzz+∈S

log
M∑

m=1

κm,S√
2π det(Σm,S)

exp[−(zzz+ − µm,S)tΣ−1m,S(zzz+ − µm,S)]

(3)

For DCSPVs, we use another GMM [κD, µD,ΣD] in a similar
way. For an unknown SPV, we compute the log-likelihood
L(zzz+) = LS(zzz+) − LD(zzz+). If L(zzz+) > η, the related two
utterances are from the same speaker and vice versa.

Usually, the number of DCSPVs is far greater than the
number of SCSPVs. We do not need to use all the DCSPVs.
This both reduces the amount of computation and puts more
attention on easily confusable vectors. The easily confusable
vectors are selected by a cosine scoring. For example, xxxa is a
target vector. We compute all the cosine scores with vectors
from different classes, sort them in a deceding order and select
vectors corresponding top-N cosine metric scores to compute
easily confusable DCSPVs.

We can also use a deep neural network (DNN) instead of
a GMM to perform the classification task on the extracted
SPVs, as shown in Fig 2. The DNN is a traditional feed-
forward network with 3 hidden fully connected layers. From
bottom to top, the number of nodes in each hidden layer are
256, 256 and 64 respectively. The output layer is 2 dimension
vector with [1, 0] for the SCSPVs and [0, 1] for the DCSPVs.
The activation function of the hidden layers is a sigmoid and
the activation function of the output layer is softmax.

The proposed SPSL has no explicit Q and requires a
different interpretation approach.

IV. EXPERIMENTS AND ANALYSIS

A. Databases

Experiments were carried out on two sets of data. The first
set includes common condition 7 of the SRE08 core task (c7-
08) and common condition 5 of the SRE10 core task (c5-10).
The core task of the SRE08 is named short2-short3. There
are 8 common conditions. The c7-08 task is the telephone-
telephone-English condition, containing 1265 models, 1567
test segments and 17761 trials. The core task of the SRE10 is
named core-core. There are 9 common conditions. The c5-10
task is telephone-telephone condition, containing 580 models,
678 test segments and 30204 trials.

The second set is the SRE14 ivec (SRE14) challenge
database. Differently from previous SREs, i-vectors instead of
speech are provided in this challenge. The purpose of NIST
is to attract more scholars in the field of machine learning
to participate in the challenge. The NIST SRE14 is gender
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Fig. 1. Two cases of metric learning. The circle represents subtraction vectors
belonging to the same class and the triangle represents subtraction vectors
belonging to the different classes. The solid line in the above figure represents
the ideal classification ellipse.

Fig. 2. DNN for SPV classification.

independent, contains 1306 models, 9634 test segments and
12582004 trials. The trials are randomly divided into two

subsets: a progress subset (40%) and an evaluation subset
(60%). Each speaker model has 5 i-vectors and there are 6530
i-vectors for speaker models. In addition, NIST provided a
development set, containing 36572 i-vectors. All the i-vectors
are 600-dimensional.

B. Configuration

Speech/silence segmentation was performed by a G.723.1
VAD detector. A 13-dimensional MFCC was extracted, with
appended delta and acceleration coefficients. 39-dimensional
vectors were subjected to feature warping [20]. UBMs with
1024 Gaussian components were gender-dependent. The rank
of the matrix T is 800. Length normalization was applied [21].

C. Database 1: SRE08 and SRE10

We used previous NIST evaluation data and some additional
corpora to estimate our system parameters. Table I summarizes
the data we used. The EER, MDCF08 1 and MDCF10 2 were
adopted as the performance measurements.

TABLE I
TRAING DATA FOR UBM, T

SWB SRE04 SRE05 SRE06 SRE08
UBM × ×
T × × × × ×
1 The last column are only used for the SRE10 trials.

In SRE08 II, the performance of SPSL-GMM is a little
worse than PLDA and LDA-PLDA. But in SRE10 III, it can
compete with PLDA and LDA-PLDA.

TABLE II
SUMMARY EXPERIMENTS ON THE C7-08

case
Female Male

EER(%) MDCF08 EER(%) MDCF08

Cosine 7.17 0.297 5.69 0.221
PLDA 2.09 0.092 1.93 0.116
LDA-PLDA 1.99 0.090 1.70 0.108
SPSL-GMM 2.12 0.106 2.01 0.125

TABLE III
SUMMARY EXPERIMENTS ON THE C5-10

case
Female Male

EER(%) MDCF10 EER(%) MDCF10

Cosine 6.76 0.694 6.70 0.718
PLDA 2.82 0.391 2.55 0.416
LDA-PLDA 2.57 0.435 2.83 0.314
SPSL-GMM 2.71 0.406 2.63 0.332

1The minimal detection cost function defined by the NIST SRE08.
2The minimal detection cost function defined by the NIST SRE10.
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Fig. 3. tSNE cluster results of SCSPVs (red circles) and DCSPVs (blue circles).
The points from SCSPVs show stronger cohesion and the points from DCSPVs
show more dispersion. This is the reason that we use more DCSPVs to train
GMMs or DNN.

D. Database 2: SRE14

For the SRE14 experiments, we used the labeled develop-
ment subset to train our models. The dimension of LDA and
PLDA are 250 and 200, respectively. The GMMs with full
covariance matrices are trained on both SCSPVs and DCSPVs.
If the number of vectors in a class is l, the number of SCSPVs
is l(l−1)/2. The total number of DCSPVs is much larger than
SCSPVs, and only 85000 easily-confused DCSPVs are used,
as shown in Fig 3. The configuration of the DNN is depicted
in section III.

We also use the PLDA result in Table IV as a baseline
system to examine the relative performance improvement
of the proposed method. The SPSL-GMM has a relative
improvement of 10.32% and 4.03%, which demonstrates the
effectiveness of proposed method. The SPSL-GMM in our
experiment uses a single GMM mixture. We have tried a
higher number of mixtures but it doesn’t shown improved
performance. The number of confusable DCSPVs is also
an experimental number. Higher (120000, 240000) or lower
number (70000, 80000) is also examined but we get worse
results. As far as we known, the SPSL-GMM is one of few
methods which achieves state-of-the-art result without a PLDA
backend.

Similarly to [22], we also study the DNN as the backend
classifier. The main difference is that the former is based on
i-vectors and the latter is based on SPVs. Our experimental
results are consistent with [22] in that the DNN has a certain
effect.

V. CONCLUSIONS

In this paper, we propose a subtraction positive similar-
ity learning (SPSL) for text-independent speaker recognition.
SPSL can take good advantage of the position information of
subtraction vector. Experiments were carried out on the NIST
SRE08, SRE10 and SRE14 data corpus to demonstrate the
effectiveness of proposed method.

TABLE IV
SYSTEM EXPERIMENTS ON THE SRE14

case
Progress Evaluation

EER(%) MDCF14 EER(%) MDCF14

cosine 4.78 0.386 4.46 0.378
PLDA 2.52 0.281 2.39 0.266
LDA-PLDA 2.51 0.259 2.36 0.250
DLPP-PLDA 2.33 0.245 2.17 0.231
SPSL-GMM 2.20 0.271 2.20 0.254
SPSL-DNN 2.95 0.323 2.82 0.307
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