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Abstract—This study proposes a stripe artifact removal method based
on robust principal component analysis (RPCA) for millimeter wave
(MW) automotive radar images. With the development of MW radar
detection technology, there is a demand for installing obstacle detectors
on vehicular for safety. From this background, the authors developed
squint-mode synthetic aperture radar (SAR) with MW (MW-SAR) as
a high-resolution imaging technique. For synthesizing radar images, a
back-projection algorithm (BPA) is adopted because of its real-time
processing nature with high accuracy. However, SAR images obtained
with Single Input and Single Output (SISO) systems are prone to be
contaminated by a stripe-shaped artifact and can affect to the obstacle
detection performance. Thus, to reduce the structured noise, this paper
proposes successive RPCA on the assumption that the stripe artifacts
and obstacle reflection are low-rank and sparse, respectively. As a solver,
the alternating direction method of multipliers (ADMM) is adopted.
The main contribution of this work is to initialize the ADMM state by
taking account of the similarity of low-rank components between adjacent
segments. Through simulations with experimental data, the significance
of the proposed method is verified.

I. INTRODUCTION

With the rapid growth of artificial intelligence technology and
the formation of the intelligent transportation industry, the advanced
driver-assistance systems (ADAS) are gradually attracting people’s
attention. In this situation, robust detection of obstacles has become
one of the important research directions. Unlike optical cameras and
infrared radars, millimeter wave (MW) radar has advantages of high
accuracy, long detection distance and high resistance to bad weather
such as rain, fog and snow. As a result, MW radar becomes an
indispensable element of ADAS [1]. From this background, we are
developing a squint-mode synthetic aperture radar (SAR) with MW
(MW-SAR) as a high-resolution imaging technique [2], [3]. For the
automotive applications, the main purpose is to detect objects on the
front side. When an object such as a pedestrian crossing ahead exists,
the synthesis should be performed up to the position. Unlike the air-
borne and space-borne SAR, the real-time capability is of interest.

In order to realize the online synthesis aperture, we adopt a back-
projection algorithm (BPA) [4]. BPA has advantages in the real-time
processing compared with the competitive beam forming and in the
high accuracy compared with the competitive range Doppler method.
However, SAR images obtained by BPA with simple Single Input
and Single Output (SISO) systems are prone to be contaminated
by stripe-shaped artifacts, which can affect to the obstacle detection
performance. The synergetic effect of the reconstruction and corre-
lated clutter causes stripe-shaped artifacts as structural noise. The
stripe artifacts in SAR images can degrade the obstacle detection
performance after the acquisition. To overcome this degradation, one
approach is to adopt a Single Input and Multiple Output (SIMO)
radar system, which the authors proposed before [5]. In this work,
as another approach, we develop a computational method to remove
the stripe artifacts for SIMO MW-SAR systems.

SAR systems acquire high-resolution images. Therefore, the

Fig. 1. Observation model of automotive MW-SAR imaging

restoration solver should be simple, and further be effective for the
target problem. The stripe artifacts have regular structure and can
be assumed to have low rank when viewed as matrices. With an
additional assumption that significant obstacles are sparsely located,
we can reduce the stripe artifact removal problem to robust principal
component analysis (RPCA, Robust PCA) [6]. RPCA is proposed by
Wright et al. and gives us a two term representation of a data matrix
as the sum of low rank and sparse matrix.

By using the RPCA formulation, we propose to decompose a
contaminated SAR image into stripe artifact and significant obstacles.
Through the convex-relaxation, the problem becomes able to be
solved by the alternating direction method of multipliers (ADMM).
As a result, a simple solver can be obtained. However, the algorithm
must consider real-time capability. Therefore, we propose to divide a
SAR image into small segments in the azimuth direction, and remove
the stripe artifacts segment by segment. Since ADMM requires
iterative process, an appropriate initial state must be set in order to
reduce the number of iterations. As an online initialization method,
we further propose to successively transfer the state of the previous
segment to the current one. We apply this method to the stripe
artifacts removal from MW-SAR images and verify the significance
of the proposed method through simulations with experimental data.

II. OVERVIEW OF MW-SAR DATA ACQUISITION

This section provides an overview of MW-SAR observation model
and discusses the causes of stripe artifacts.

A. SAR Imaging Algorithm

SAR imaging is a method in which the radar detects objects while
moving, and then the result is synthesized with high precision to
virtually generate a large-aperture antenna. Fig. 1 shows the geometry
of the observation model for the automotive MW-SAR system that
we deal with [7]. The SAR imaging algorithm of this study is based
on BPA [4]. In Fig. 1, we suppose the x-axis is the moving direction
and θs represents the squint angle. We employ the Linear-FM (LFM)
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Fig. 2. Experimental setup for automotive MW-SAR imaging

(a)

(b)

(c)

Fig. 3. Magnitudes of SISO MW-SAR images of different squint angles, where
(a) θs = 0◦, (b) θs = 45◦ and (c) θs = 70◦.

radar, and a SAR image is reconstructed by

PBPA(x, y) =
1

N

∑
N

sb (x, y, xu) exp

(
−j

4πfc
c

r (x, y, xu)

)
,

(1)
where x and y are positions in the along track (azimuth) and
range direction, respectively, N is the number of observation points,
r(x, y, xu) is the range distance between the antenna position x = xu

and observation point (x, y), and sb(x, y, xu) is the image created
by mapping a range data on the beat-spectrum at xu, fc is the center
frequency and c is the speed of light [7].

B. Stripe Artifacts

Fig. 2 shows an experimental setup for measuring environment
with an automotive MW-SAR system, and Fig. 3 shows SISO MW-
SAR results with squint angles of 0◦, 45◦ and 70◦, where the
specification is summarized in Section IV. From the images shown in
Fig. 3, it is observed that the SISO MW-SAR results have significant
interference with stripe shape along track. In order to detect obstacles
ahead quickly, the squint angle θs should be close to 90◦. However,
the stripe artifacts are getting stronger as θs increases. The mechanism
of causing the interference have not been analyzed exactly. Our
conjecture is that it is due to insufficient interval of sampling in
the azimuth direction, and the synergetic effect of the reconstruction
and correlated clutter causes the structural noise.

III. STRIPE ARTIFACT REMOVAL WITH RPCA

In this section, we propose to apply RPCA to reduce the stripe
artifacts in SISO MW-SAR images on the assumption that an
observation is composed of a stripe artifact and obstacle reflection
component, and the former is low-rank and the latter is sparse,
respectively. As a solver, ADMM is successively adopted to small
segments with initialization by taking account of the similarity of
low-rank components between adjacent segments.

A. Assumption

Let M ∈ CM×K is an observation matrix of MW-SAR image,
where M ∈ N and K ∈ N are the numbers of rows and columns,
respectively. From the regular structure of the stripe artifacts, we can
expect some dependencies on the structural noise, i.e., the low rank
property as a matrix.

Therefore, we assume that the observation M can be decomposed
into two components as

M = L+ S, (2)

where L ∈ CM×K is a low-rank component and S ∈ CM×K is a
sparse component. We expect that L consists of the stripe artifacts
and S consists of the obstacle reflections. The goal of our image
restoration is to remove L from M. Thus, S is what we demand.

B. Robust Principal Component Analysis

Let us formulate the decomposition problem in (2). We propose to
use RPCA to separate the observation M into the stripe artifacts L
and the obstacle reflections S.

1) Problem Formulation: RPCA is a signal processing method
based on compressed sensing [8] and sparse expression theory [?].
The core idea of RPCA is to decompose the contaminated observation
matrix M into a low rank matrix L and a sparse matrix S by an
optimization criterion with the rank of L regularized by the sparsity
of S under the constraint of (2).

We formulate the SAR image restoration problem as

min
L,S∈CM×K

rank(L) + λ∥S∥0 s.t. L+ S = M, (3)

where rank(·) denotes the rank of the argument, ∥ · ∥0 denotes the
ℓ0 pseudo norm, which counts the number of nonzero entries, and
λ > 0 is a regularization parameter.

2) Convex Relaxation: It is known that the problem in (3) is NP-
hard and thus numerically intractable. Therefore, we apply the convex
relaxation to (3) so that we can approximately solve it as a convex
optimization problem. Let us modify (3) to a convex optimization
problem as

min
L,S∈CM×K

∥L∥∗ + λ∥S∥1 s.t. L+ S = M, (4)

where ∥ · ∥∗ denotes the nuclear norm, i.e., the sum of the singular
values, and ∥ · ∥1 denotes the ℓ1 norm, i.e., the sum of the absolute
values of all elements in the matrix.

C. Alternating Direction Method of Multipliers (ADMM)

(4) is a convex optimization problem and has the global optimal
solution. Glowinski et al. proposed ADMM [10], which gives a
computational framework for solving a certain form of convex
optimization problems. ADMM breaks down a large global problem
into multiple small easy-to-resolve local small problems, and adjusts
the small problem solutions to solve the large global problems. It is
suitable for solving distributed convex optimization problems.
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Algorithm 1 ADMM for solving Problem (4)

Input: Z
(0)
i , D(0)

i for i ∈ {1, 2, 3}, ρ > 0, n = 0

Output: L(n), S(n)

1: while a stopping criterion is not satisfied, do
2: L(n+1) := 1

3

(
2Z

(n)
1 −2D

(n)
1 −

(
Z
(n)
2 −D

(n)
2

)
+ Z

(n)
3 −D

(n)
3

)
3: S(n+1) := Z

(n)
1 −D

(n)
1 + Z

(n)
3 −D

(n)
3 − 2L(n+1)

4: Z
(n+1)
1 := prox 1

ρ
∥·∥∗

(
L(n+1) +D

(n)
1

)
5: Z

(n+1)
2 := proxλ

ρ
∥·∥1

(
S(n+1) +D

(n)
2

)
6: Z

(n+1)
3 := prox 1

ρ
ι{M}

(
L(n+1) + S(n+1) +D3

)
7: D

(n+1)
1 := D

(n)
1 + L(n+1) − Z

(n+1)
1

8: D
(n+1)
2 := D

(n)
2 + S(n+1) − Z

(n+1)
2

9: D
(n+1)
3 := D

(n)
3 + L(n+1) + S(n+1) − Z

(n+1)
3

10: n← n+ 1

11: end while

1) RPCA with ADMM: (4) is a typical convex optimization
problem, but it is difficult to be solved directly. By incorporating
the indicator function ιC(·) for a closed convex set C, we can
equivalently rewrite the problem as in the following unconstrained
minimization problem:

min
L,S∈CM×K

∥L∥∗ + λ∥S∥1 + ι{M}(L+ S). (5)

The problem in (5) has a form which can be solved by ADMM. The
algorithm is derived as in Algorithm 1, where the proximal operators
proxγ∥·∥∗(·), proxγ∥·∥1(·) and proxγιC

(·) are expressed for γ > 0
as follows:

proxγ∥·∥∗(X) := USγ(Σ)VH, (6)

proxγ∥·∥1(X) := Sγ(X), (7)

proxγι{M}
(X) := P{M}(X) = M, (8)

where U ∈ CM×r and V ∈ CK×r are unitary matrices and Σ ∈
Rr×r is a diagonal matrix consisting of r singular values of the matrix
X ∈ CM×K , which are obtained by the singular decomposition

X = UΣVH. (9)

The superscript H denotes the Hermitian transposition. In addition,
Sγ(·) is the element-wise soft-thresholding function defined by

[Sγ(X)]m,k := [X]m,k ·max (1− γ/ |[X]m,k| , 0) , (10)

where [·]m,k denotes the m-th row and k-th column element, and
PC(·) is a metric projection to a closed convex set C ⊂ CM×K .

2) Initialization: Before running Algorithm 1, we need to initialize
the states Z

(0)
i and D

(0)
i for i ∈ {1, 2, 3}. We can start L(1) = M

and S(1) = OM×K by using the following setup:

Z
(0)
1 = M, Z

(0)
2 = OM×K , Z

(0)
3 = M,

D
(0)
1 = OM×K , D

(0)
2 = OM×K , D

(0)
3 = OM×K ,

where OM×K denotes the zero matrix of size M ×K.

D. Online Initialization for Successive RPCA

It should be noted that automotive MW-SAR imaging requires real-
time processing. Therefore, it is preferable to reduce the number of
iterations in ADMM. In addition, it is necessary to remove stripe
artifacts successively moment by moment. For these demands, we
propose to partially process small segments of the SAR image and
initialize each ADMM state by taking account of the similarity of
low-rank components between adjacent segments.

TABLE I
EXPERIMENTAL SETUP

Radar system Linear FM-CW
Center frequency 76.5 GHz
Frequency bandwidth 0.9 GHz
Sweep time 0.5 msec.
Sampling frequency 1.2 msec.
Pulse reputation interval 5 km/h
SAR method Backprojection method
Squint angle 0◦, 45◦, 70◦

Let Mp ∈ CM×K be the p-th SAR observation and M be a time-
series data of those observations as

M = {M0,M1,M2, · · · }. (11)

The stripe artifacts removal is separately performed for each
segment. Since the process is divided in the azimuth direction, we
propose to initialize the ADMM states Zi and Di for i ∈ {1, 2, 3}
by using the state of the previous segment except for the constraint
regarding with the observation as Z3 = Mp.

Let Zp,i and Dp,i for i ∈ {1, 2, 3} be variables Zi and Di in
Algorithm 1 for the p-th segment Mp, respectively. Then, we propose
to initialize those state variables from the previous segment except
for Zp,3 as follows:

a) For p = 0:

Z
(0)
p,1 = Mp, Z

(0)
p,2 = OM×K , Z

(0)
p,3 = Mp,

D
(0)
p,1 = OM×K , D

(0)
p,2 = OM×K , D

(0)
p,3 = OM×K ,

b) For p > 0:

Z
(0)
p,1 = Z

(end)
p−1,1, Z

(0)
p,2 = Z

(end)
p−1,2, Z

(0)
p,3 = Mp,

D
(0)
p,1 = D

(end)
p−1,1, D

(0)
p,2 = D

(end)
p−1,2, D

(0)
p,3 = D

(end)
p−1,3.

The superscript (end) represents the final state of ADMM.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed stripe
artifact removal method. We compare the results of RPCA with
different initialization methods for experimental MW-SAR images
acquired by a SISO system.

A. Experimental Setup

Stripe artifact removal is performed for data acquired by an actual
SISO MW-SAR system. Fig. 3 shows magnitudes of three SAR im-
ages acquired with different squint angles, i.e., θs ∈ {0◦, 45◦, 70◦}.
The environmental setup is shown in Fig. 2 and the specifications
on the experimental system setup are summarized in Table I. Every
image is normalized with each maximum value. The dimension is
60000 lines in the azimuth direction and 219 points in the range
direction.

B. Experimental Results

Each time series image shown in Fig. 3 was divided into 100
segments of size M×K = 219×600 as M =

{
Mp ∈ C219×600

}99

p=0
,

where the dimension of Mp corresponds to around 30m in the range
direction and around 1m along track. Each segment is processed
sequentially from 0m to 100m along track.

Fig. 4 (a) and (b) show the restoration results of θs = 45◦

and θs = 70◦ by the independent initialization of ADMM, respec-
tively, and Fig. 5 (a) and (b) show those by using the proposed
online initialization method. The top and bottom images show the
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(a) (b)
Fig. 4. Results of independent initialization, where the top and bottom images are magnitudes of low-rank component L and sparse component S, respectively.
(a) θs = 45◦, (b) θs = 70◦,

(a) (b)
Fig. 5. Results of proposed online initialization, where the top and bottom images are magnitudes of low-rank component L and sparse component S,
respectively. (a) θs = 45◦, (b) θs = 70◦,

TABLE II
CONFIGURATIONS OF ADMM

M ×K λ ρ ♯iterations
219×600 0.1 1.0 10

magnitudes of low-rank component L =
{
Lp ∈ C219×600

}99

p=0
and

sparse component S =
{
Sp ∈ C219×600

}99

p=0
, respectively, where

Mp = Lp + Sp, and all data are normalized with the original
maximum value. Table II summarizes the configurations of ADMM.

The restoration image appears as the sparse component S. Note that
the number of iterations are set to 10 for every case. It is clear that
the proposed online initialization emphasizes obstacles and performs
better than the independent initialization.

V. CONCLUSION

In this study, we proposed to apply RPCA to SISO MW-SAR
image restoration. A successive stripe artifact removal algorithm is
proposed based on ADMM. From some experimental results, the
significance of our proposed method was verified through comparison
with the traditional ADMM approach. In the future, we will further
study the cause of the artifacts, refine the model and improve the
restoration performance.
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