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Abstract— Single image reflection removal is a challenging task 
in computer vision. Most existing approaches rely on carefully 
handcrafted priors to solve the problem. Contrast to the 
optimization-based methods, an intensity-aware GAN with dual 
generators is proposed to directly estimate the function which 
transforms the mixture image into the reflection image itself. 
From the observation that the reflection layer has more 
discriminating power in the region with low intensity than that in 
the region with high intensity, the proposed architecture better 
describes the characteristic of the model. Moreover, a reflection 
image synthesis method based on the screen blending model is also 
presented. Experimental results demonstrate that the results of 
reflection removal are satisfactory in real cases while comparing 
with state-of-the-art methods.  
 

I. INTRODUCTION 
Images of a scene taken through transparent or translucent 

material like glasses are often plagued by undesired artifacts 
such as the reflected hallucinations of the foreground scene. As 
shown in Fig. 1, the captured image I is superimposed by the 
reflection image R  and the intended reflection-free image 
which is called the transmission image T . We attempt to 
separate the transmission image from the reflection image since 
it not only improves the visual quality but also benefits many 
computer vision tasks such as object detection or image 
classification. This separation is intuitive for human beings but 
is very challenging for computer vision algorithms.  
 

 
Fig. 1: The mixture image of the reflection and the transmission. 

 
Such a problem is ill-posed due to the infinite combinations 

of the transmission image and the reflection image. Several 
research works tackled this problem by exploiting redundant 
information with multiple images [1,2,3,4]. However, multiple 
images are not always available and it often requires precise 
image registration so that it is not applicable to moving objects 
such as taking photo through the window on a train. Other 
works taking single input image tried to impose additional 

constraints using prior knowledge such as the statistics of the 
natural images or the guidance of user inputs [5,6,7,8,9]. But it 
is known that methods which need user input are inconvenient 
on practice. As the optimization-based methods focus on 
finding proper priors to model the mixture image, the rise of 
deep neural network [10] provides an alternative thought to this 
problem [11][12]. One may directly learn the function itself 
from the data in an end-to-end manner, and then infer the 
answer via the function.  

Here we claim that the reflection removal problem can be 
viewed as an image-to-image translation problem: given a 
mixture image I, find a function f x; θ  which translates I to its 
reflection-free transmission image T. The image-to-image 
framework [13] which is based on the Generative Adversarial 
Network (GAN) [14] is adopted as the base network. The 
image-to-image network trains a GAN in two parts: a generator 
network to translate a source image into a target image, and a 
discriminator network to distinguish whether the generated 
image along with the source image form a pair or not. In other 
words, we translate a mixture image into a reflection image. 

A well-known issue of deep neural network is that it relies 
on large amount of data. However, there’s no such particular 
dataset existing for reflection removal. In our task, an example 
consists of a reflection image and a “clean” image. The process 
of obtaining both images from real scene requires special 
hardware and costs a lot of time. Consider the total amount of 
data we need, synthesizing the data from real images is a more 
tractable way.  In contrast to the commonly adopted additive 
blending model, a screen blending model is chosen to mimic 
the intertwining effect between the reflection image and the 
transmission image. From the observation that the reflection is 
more prominent in the low intensity region than that in the high 
intensity region, a model with dual generators is proposed to 
describe the characteristics of the low intensity region and high 
intensity region separately. Comparing to other image-to-
image framework where L1-loss or L2-loss is utilized to 
regularize the generated image as close as possible to the input 
image, an L1-loss weighted by the reflection intensity is 
proposed to model the reflection phenomenon adaptively. 

The contributions of the proposed work are listed below. 1) 
A screen blending model is proposed to synthesize the 
reflection images based on a multiplicative model instead of 
the additive one. The experimental results show that the 
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proposed model outperforms the traditional one in terms of the 
trueness of the real phenomenon. 2) A generative adversarial 
network with dual generators is proposed to compromise the 
different characteristics between the high intensity regions and 
low intensity regions. 3) A loss function based on the weighted 
L1-norm provides more adaptability than the original image-
to-image framework. 

The paper is organized as follows. An overview of the related 
work of reflection removal is presented in Section II and the 
proposed method is detailed in Section III. Section IV 
demonstrates the experimental results and the conclusive 
remarks are given in Section V. 

 
II. RELATED WORK 

The related work of reflection removal can be categorized 
into two groups based on the type of input. Each of them is 
reviewed in the following two subsections. 

A. Multiple Images Reflection Removal 
Lots of work rely on multiple input images to find cues 

which help to distinguish the transmission layer from the 
reflection layer. Li and Brown [1] proposed to exploit a 
common phenomenon that the reflection varies with respect to 
the background when viewing angle changes. By aligning the 
images taken from different viewpoints, gradients with 
variation are likely to belong to the reflection and gradients 
belong to the background are mostly remain constant. Sun et al. 
[2] leverages motion cue to separate the reflection and the 
transmission layer. They observed that the background pixels 
tend to dominate the motion vectors across different SIFT-flow 
smoothness levels, and pixels from the reflection layer are less 
prominent than the background. Guo et al. [3] used three priors 
to find optimized separation: correlation of transmission layer 
in images, the sparsity and the independence between the 
gradient fields of the transmission and the reflection layer. Xue 
et al. [4] used motion difference to find the initial transmission 
and reflection layers. An iterative procedure based on dense 
motion fields is conducted to refine the transmission layer and 
reflection layer. Although methods with multiple input images 
achieve remarkable results, the requirement of multiple inputs 
hinder its usage in practical situations. 

B. Single Image Reflection Removal 
Single image based methods rely on priors to constrain the 

solution space. Levin and Weiss [5] proposed to leverage the 
sparse property of natural image by imposing a Laplacian prior 
over the gradients. Two sets of points with user labeling are 
required to regularize the optimization. Li and Brown [6] 
proposed to characterize the transmission layer and the 
reflection layer by their gradient histogram distribution as the 
transmission layer tends to have large gradients and the 
reflection layer is often blurred and smooth. Shih et al. [7] 
observed that most reflection images come with “ghosting” 
artifacts and can be modeled as the convolution with an 
estimated kernel. To further ease the ill-posed problem, patch 
based GMM priors are imposed on both the transmission and 
the reflection layer. Wan et al. [8] use DoF (depth of field) as 
the main clue to distinguish the edges belonging to the 

background from those belong to the reflection layer. With the 
estimated reflection edge map and the transmission edge map, 
Levin and Weiss’s method [5] attempts to reconstruct both the 
transmission and reflection images. Based on a Laplacian data 
fidelity term and the gradient sparsity term imposed on the 
output, Arvanitopoulos et al. [9] tries to suppress the reflection 
effect rather than removing it completely.  

The proposed method differs from the above optimization 
based methods which solves for the answers with certain 
constraints. We directly estimate the transform function from I 
to T via a deep neural network. 

 
III. THE PROPOSED METHOD 

A. Data Synthesis 
An unavoidable problem comes along with the deep learning 

is that it requires massive amount of training data. In the case 
of reflection removal, each sample is an aligned pair of a source 
mixture image and a target transmission image. Although it is 
possible to acquire both images through specialized optical 
device such as polarizing filters, the process is time-consuming 
and inefficient. Thus, we opt for using synthetic data as our 
training samples. The filtered Open Images dataset [15] is 
considered as our natural image source. It consists over 9 
million images with 6000 categories which provides sufficient 
diversity of data. First, two images are randomly selected from 
the dataset. One of them is conducted with intensity adjustment 
ranging from 9% to 18% stochastically, which results as the 
reflection layer. The reason why this range of the percentage is 
chosen can be explained via Fig. 2. The reflectance of glass 
usually falls between 0.05 and 0.1. Assume the energy of the 
incident light is E and the reflectance of the given medium is 
0.1. In this case, the first reflection R1 is 0.1E and the second 
reflection R2 is 0.081E. The energy of third reflection R3 is 
less than 0.001E which can be neglected. As a result, the total 
energy of the reflection captured by the camera is about 0.181E 
(18.1%). Similarly, the reflection is about 0.095E (9.5%) when 
the reflectance of the medium is 0.05. 

 

 
Fig. 2: The illustration of energy decay of the reflection light. 

The mapping function is regressed from real images 
captured with different shutter time and Fig. 3 shows the 
regression of data clusters. The other one, as the transmission 
layer, remains unchanged in the final compositing process. 

The following equation describes a widely adopted additive 
model. 

𝐼 = 𝑇 + 𝑅                                     (1) 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

591



Even though it is satisfactory in most image compositing cases, 
it is too simplified to model the complicated intertwining 
factors between the transmission image and the reflection one. 
 

 
Fig. 3: Surface regression of intensity with different energy ratios. 

 
Therefore, we adopt the screen model for image blending: 
 

I = 1 − 1 − T ⊙ 1 − R = 𝑇 + (1 − 𝑇) ⊙ 𝑅,     (2) 
 
where ⊙  denotes the Hadamard product. This essentially 
equals to the additive model where the reflection image is 
weighted by the inverse intensity of the transmission image, 
which is in accordance with our observation of realistic mixture 
images. In order to verify the screen model, an experiment is 
performed as follows. First, the transmission layer, T, is taken 
without any obstacles in between the camera and the indoor 
scene. Next, a piece of glass is set between the camera and the 
indoor scene in order to capture the mixture image which 
contain the transmission layer and the reflection layer. The last 
step, as illustrated in Fig. 4, a black curtain is attached to the 
glass while shooting the scene so that the real reflection layer, 
R, (the outdoor scene) can be obtained purely. Once the real 
transmission image and real reflection image are available, the 
image synthesis process is conducted according to the additive 
model and the screen model separately. 
 

 
Fig. 4: The way to capture the real transmission layer, R. 
 
Fig. 5 demonstrates the difference between the additive 

blending model and the screen blending model. As can be seen 
from those figures, the result (Fig. 5(e)) generated by the screen 
model is much more similar to the real mixture image (Fig. 
5(a)), which explains the reason why screen model is adopted 
in synthesizing the training data. More synthetic images are 
shown in Fig. 6. 

 
(a) Real mixture image    (b) transmission           (c) real reflection 

 
                     (d) additive model          (e) screen model 

Fig. 5: Comparison of blending results. 
 

 
Fig. 6: Several synthetic images. 

B. Intensity-aware Single Image Reflection Removal 
Isola et al. [13] proposed a new framework based on 

conditional Generative Adversarial Network [14] to solve the 
image-to-image translating problem. GANs formulate the 
network learning as a competitive game between a generator G 
and a discriminator D. The generator G attempts to generate 
fake samples as close as possible to the real samples from the 
dataset, and the discriminator is trained to differentiate the fake 
samples. The objective function of GAN is 

 
ℒ567 𝐺, 𝐷 = 𝔼< log𝐷 𝑦  

+	𝔼_(𝑥, 𝑧)	[log	(1 − 𝐷(𝐺(𝑥, 𝑧)))	].      (3) 
 
In the image-to-image setting, the discriminator is conditional 
on the input image. Thus, the objective function became  
 

ℒG567 𝐺, 𝐷 = 𝔼H,< log𝐷 𝑥, 𝑦  
+	𝔼H,I[log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))].              (4) 

 
To further encourage the output of the generator to resemble 

the input ground truth image, an L1-loss or L2-loss is added 
empirically. 

 
 ℒJK(𝐺) = 𝔼H,<,I[ 𝑦 − 𝐺(𝑥, 𝑧) K]               (5) 

 
In order to comply with the screen blending model 

assumption, the L1-loss between the generated reflection 
image and the ground truth reflection image is weighted by the 
inverse of the ground truth transmission image, which results 
in emphasizing the importance on the low intensity region. This 
modified L1-loss is 
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 ℒLJK_MNO(𝐺) = 𝔼H,<,I[ 1 − 𝑇PQ ⨀(𝑅PQ − 𝐺(𝑥, 𝑧)) K
].  (6) 

For better modeling the characteristic difference between the 
high intensity region and the low intensity region, a GAN with 
dual generators GK and GS is proposed and is shown in Fig. 7. 

 

 
Fig. 7: The proposed GAN with dual generators. 

 
Generator GKis responsible for generating the high intensity 

region of the reflection image, while generator GS is for low 
intensity region. The L1-loss for GK is simply weighted by the 
ground truth transmission intensity 𝑇PQ, which is 

ℒLJK_TUVT(𝐺) = 𝔼H,<,I[ 𝑇PQ⨀(𝑅PQ − 𝐺(𝑥, 𝑧)) K
],      (7) 

and the overall objective is  

𝐺∗ = argmin
5

max
]

ℒG567 𝐺, 𝐷                                                                  

+ℒLJK^_` 𝐺 + ℒLJK_TUVT(𝐺).                  (8) 

Therefore, the final reflection image can be obtained as 
follows: 

 𝑅abcdM = (1 − 𝑇M)⨀𝑅M + 𝑇M⨀𝑅e            (9) 

where 𝑇M, 	𝑅M is the transmission layer and the reflection layer 
generated by the low region generator, 𝑅e  is the reflection 
layer generated by high region generator and 𝑅abcdM is the final 
generating result and the input of discriminator. 
 

IV. EXPERIMENTAL RESULTS 
For the generator G, the U-net, which is an auto encoder with 

symmetric skip connections is adopted. For the discriminator 
D, the PatchGAN is utilized as in the original image-to-image 
network. 100K color images with resolution 256× 256 is 
synthesized for the training set and several real photos with 
reflection are gathered for testing purpose. The U-Net is pre-
trained with the L1-loss for 50 epochs, which provides a nice 
initialization for the generator to start with and also helps the 
GAN training. The full GAN network is trained for 100 epochs 
afterwards. 

A. Qualitative Results 
Fig. 8 shows several results of the proposed method. Fig. 

8(a) is the input image, Fig. 8(b) and Fig. 8(c) are the reflection 
layers of low intensity region and high intensity region, 
respectively. Fig. 8(d) represents the composited reflection 
layer and Fig. 8(e) shows the transmission layer extracted by 
the proposed method. As we can see, the reflection layers and 
the transmission layer are satisfactory. 

B. Comparison with state-of-the-art methods 
In this section, three single-image-based approaches are 

compared: Li and Brown [6], Wan et al. [8] and Arvanitopoulos 
et al. [9] as state-of-the-art. Fig. 9 demonstrates the comparing 
results with reflection strength increasing from top to bottom. 
As can be seen from the results of first three sets, Li and Brown 
[6] removes the reflection partially at the cost of causing 
obvious color deviation. Wan et al. [8] has better capability of 
eliminating reflection but lots of texture details are wiped out 
as well. Arvanitopoulos et al. [9] seems to over smooth the 
image in the regions which contain reflection, which results in 
undesired artifacts. Overall speaking, the results of the 
proposed method not only keep the similar color tone with the 
input image but also remain the details of the texture parts. The 
most importance thing is that the reflection layer can be 
removed successfully. For the last set of the results whose input 
image has the strongest power of reflection, none of the 
methods perform satisfactorily. Even though the result of the 
proposed method still retains the detail and color tone of the 
input image, the reflection can only be cleaned to a limited 
degree. In this case, the removal process may be executed 
iteratively to obtain a better result. 

 

 

 

 
(a)              (b)                 (c)                  (d)                 (e) 

Fig. 8: (a) input I, (b)(c)(d) reflection layers, (e) transmission T. 
 
 

V. CONCLUSION 
In this paper, we tackle the single image reflection removal 

problem by casting it as an image-to-image translation task, 
which is benefited from the rich modeling ability of deep neural 
network. A GAN with dual generators is proposed to model the 
reflection regions with different intensity separately. The 
training image are synthesized based on the screen blending 
model as we claim that it is more accurate to describe the real 
phenomenon than the commonly used additive model.  The 
experimental results demonstrate that the proposed method 
provides competitive results of reflection removal. However, 
the cases with strong reflection power still remain challenging. 
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