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Abstract—In the past few years, deep learning have attracted
increasing attention for HRRP-based radar automatic target
recognition(RATR) because of their powerful ability to learn fea-
tures from training data automatically. However, recent studies
show that deep learning models are vulnerable to adversarial
examples. In this paper, we verified adversarial examples also
exist in the deep learning based HRRP target recognition. A novel
adversarial attack algorithm called Robust HRRP Attack(RHA)
is proposed to generate robust adversarial perturbations in real-
world. Experimental results on measured HRRP data show
that RHA decrease HRRP recognition performance significantly
which indicate our method is efficient and robust.

I. INTRODUCTION

High-resolution range profile (HRRP), is the amplitude of
the coherent summations of the complex time returns from
target scatters in each range “cell”, which represents the
projection of the complex returned echoes from the target
scattering centers onto the radar line-of-sight (LOS). HRRP-
based RATR is an active research field of modern radar
technology [1]–[8] because HRRP contains abundant target
structure signatures, such as target size, scatter distribution,
etc. Feature engineering is the critical part for HRRP-based
RATR task. Wan et al. utilize convolutional neural network
(CNN) as feature extractor which achieve better performance
than traditional methods in HRRP recognition [9].

However, recent studies show that deep neural networks
are vulnerable to small, carefully designed perturbations of
the input [10]. For example, adding visually imperceptible
perturbations to the input can result in classification failures.
Initial works on adversarial examples were mainly about image
classification. But recent years, adversarial examples have
been proved to exist on domains ranging from image seg-
mentation [11] to face detection [12]. But no researchers have
paid attention to adversarial examples in HRRP-based RATR.
Adversarial examples can be roughly divided into two parts:
digital adversarial examples and physical adversarial examples
[13]. Goodfellow et al. proposed FGSM [14], a fast and first-
order gradient based method to construct adversarial examples.
In [15], an effective optimization-based attack model has been
proposed to create adversarial perturbations. These methods
make contributions to digital adversarial examples. Simultane-
ously, some researchers are interested in physical adversarial
examples. In [16], the researchers shows experiments that

digital adversarial examples failed to fool a object detectors
across a scale of different distances and angles, from which
we can find digital adversarial examples do not work well
in physical world. It’s difficult to make physical adversarial
examples.

In this paper, We focus on making robust perturbation on
time domain HRRP which could significantly decrease the
HRRP recognition performance. We first verified adversarial
examples also exist in the field of HRRP-based RATR. Fig. 1
shows an digital adversarial example created by FGSM [14],
from which we can see adding small magnitude perturbation
on the clean HRRP can fool a neural network easily. We
further take physical conditions such as the length and po-
sition of perturbation into account to design Robust HRRP
Perturbations(RHA), which can significantly decrease HRRP
recognition performance in physical world. Our experiments
show that RHA decrease HRRP recognition performance
significantly which indicate our method is efficient and robust.
As far as we know, this is the first paper which focus on the
adversarial examples in the filed of HRRP-based RATR.

II. PROPOSED METHOD

We first describe our deep learning based Radar HRRP
Target Recognition method, and then define the perturbation
which can be implemented in real world and present our algo-
rithm on how to generate physical adversarial perturbations.

A. Time domain HRRP recognition

The high-resolution radar (HRR) operates in microwave
frequency band in general. For the wide bandwidth of the
signal, the wavelength of radar is much smaller than the
targets’ size. The HRR can effectively divide the object into
many range “cells” for complex targets such as aircrafts.
According to [4], the t-th time domain complex HRRP can
be written as x̃(t) = ejθ(t) [x̃1(t), x̃2(t), ..., x̃L(t)]

⊤, where
⊤ denotes the transpose operation, θ(t) stands for the initial
phase of the t-th returned echo, and x̃l(t) =

∑Vl

i=1 σlie
jϕli(t)

denotes the echo of l-th range cell, which is composed of Vl
scatterers of strength σli and phase ϕli(t). As shown in the
bottom left of Fig. 2, the time domain HRRP represents the
reflected signal intensity versus range along the radar LOS.
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Fig. 1. This is a adversarial example in HRRP RATR. The left image shows the HRRP of an An-26 plane. The middle image is the adversarial perturbation
created by FGSM. The right image shows the adversarial example has been misclassified as Yark-42 plane.

The t-th time domain real HRRP can be defined as

x(t) = [|x̃1(t)|, |x̃2(t)|, ..., |x̃L(t)|]⊤ (1)

where | · | means taking absolute value.

B. Robust Perturbation for HRRP recognition

Firstly, We specify some of the notations used in this paper.
Let x be the clean real HRRP, y denote the class of HRRP,
ygt denotes the groud true class of the HRRP. Let y = fθ(x)
be the neural network. θ is the parameters of neural network.
Given a HRRP x, the probability of class y predicted by the
network is p(y|x). ypred = argmaxy p(y|x) is the predicted
class of x. L(x, y) denotes the loss function for training the
network. x∗ = x + δ is the adversarial examples changed
from x. δ represents the perturbation we need to learn. Which
should be noted is that δ is universal. Different from [14]
which need to compute perturbation for each images, different
input have different perturbation, our perturbation can apply
to any input. If the attack succeed, fθ(x∗) ̸= ygt, and this
can called untarget attacks. If we specified the class of the
adversarial example, then this would be called target attacks.

We consider the problem generating robust perturbation as
a optimization problem.

min D(x+ δ, x), s.t. fθ(x+ δ) = yt (2)

D is a distances metric function, for example, we can use L2 to
measure the distances between adversarial example and clean
example. Similar to [15], we use Lagrangian-relaxed method
to reformulate optimization problem.

argmin
δ

L (fθ(x+ δ), yt) + λ∥δ∥p (3)

Where L represents the most common loss function for classi-
fication, cross entropy loss, yt is the target class(the class we
expect the adversarial example to be), λ is a hyper-parameter
that controls the regularization of the perturbation. Follow the
method above, we can only make digital adversarial attacks.
Next, we should consider some environmental constraints.
By default, δ will cover the whole range of the HRRP. So
the perturbation added to the target(plane) would be out of
the target which is not feasible. The perturbation should be
added only on target area for the actual situation. So, we

adopt Constant False Alarm Rate(CFAR) [17] to find the target
region which the perturbation should be put on. We feed time
domain HRRP to the algorithm and then get the range of
target region. Another physical condition we should consider is
perturbation length. It’s easy to know small range perturbation
is easier to implement than wide range perturbation in real
world. So we set a hyper-parameter l as the length of the
perturbation. In our experiments, l ∈ [8, 12, 16, 32]. Then the
perturbation should be a small part of target region. Because
our goal is to generate robust perturbation, we expect the
perturbation can be placed in any position in target region. In
training and test time, we randomly choose a position in target
region to place perturbation with specified length. Specifically,
we employ a mask to project the perturbation on target with
certain length. Mask is a vector whose dimentions are same as
x(clean HRRP). We fill ones in the range where perturbation
is added while fills zeros in other place. Let Mx be the mask
of x, δ0 = Mx · δ be the perturbation added mask. Then our
optimization problem become

argmin
δ

L (fθ(x+ δ0), yt) + λ∥δ∥p (4)

We called our attack method robust perturbation HRRP(RHA).
The whole process has been showed in Fig. 2.

III. EXPERIMENTS

A. Measured data

We examine the recognition performance of our method on
the 3-class measured data, Yark-42, Cessna Citation S/II and
An-26, among which Yark-42 is a large and medium-sized jet
aircraft, Cessna Citation S/II a small-sized jet aircraft and An-
26 a medium-sized propeller aircraft. The radar works on C-
band with a bandwidth of 400 MHz and the range resolution is
about 0.375 m. The parameters of the radar and airplane targets
are shown in Table I and the projections of target trajectories
onto the ground plane are shown in Fig. 3.

The training and test datasets are selected following two
principles. Firstly, the training dataset should cover almost all
of the target-aspect angles. Secondly, the elevation angles of
the training and the test dataset are different. Therefore, we
select the 5-th and the 6-th segments of An-26, the 6-th and
the 7-th segments of Cessna Citation S/II and the 2-rd and
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Fig. 2. The main idea of RHA. Black arrows represent the path of forward
propagation, red arrows represent the path of backward propagation.

TABLE I
PARAMETERS OF RADAR AND PLANES

Radar parameters Center freq. 5520 MHz

Bandwidth 400 MHz
Planes Length(m) Width(m) Height(m)

Yark-42 36.38 34.88 9.83
An-26 23.80 26.20 9.83
Cessna Citation S/II 14.40 15.90 4.57

the 5-th segments of Yak-42 as training samples, and the rest
segments are taken as test samples. More concretely, there
are totally 140,000 training samples and 5,200 test samples
involved in our experiments.

B. Classifier

To prove our method can be applied to different classifiers,
we choose two basic deep learning models, MLP and CNN.
The MLP we choose has only one hidden layer for the
base classifier. Similar to [9], our CNN is composed of two
convolution layers and one fully connected layer. Table II show
the detailed architecture of MLP and CNN we used. Let fm
be the feature map got from fully connected layer. Then fm
goes into a softmax layer to classify HRRP. The output of
softmax function

p(y|x) = exp(θcT fm)∑C
j=1 exp(θ

jT fm)
(5)

represent the probability for each class. We choose the class
with the highest probability as our classification result.

C. Attack effects

In this section, we will evaluate our method proposed above
with different classifier. We report our RHA attack effects with
different perturbation length and different classifier. Then, we
plot some examples which attack successfully.

The test recognition rates for clean HRRP is 91%, 90%
for MLP and CNN. We use Adam optimizer to optimize our

TABLE II
ARCHITECTURE OF THE CLASSIFIERS

MLP CNN

layer parameters layer parameters

Linear units = 256 Conv2d kernel=1,9 stride=2
Relu - BatchNorm -
Linear units = 3 Relu -
Softmax - Conv2d kernel=1,9 stride=2

BatchNorm -
Relu -
Linear units = 3
Softmax -
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Fig. 3. Projections of target trajectories onto the ground plane. (a) An-26;
(b) Cessna Citation S/II; and (c) Yark-42.

perturbation. In test time, we randomly put the perturbation in
the target region with specific length. Then we recalculate the
recognition rates for these adversarial examples.

Table III show the average recognition rate for adversarial
example generate by RHA. From which we can find the
average recognition rate decrease rapidly as the perturbation
length increase. For MLP, the recognition rate drop from 91%
to 51.1% when the perturbation length be 32. The recognition
rate drop from 90% to 45.7% when the perturbation length be
32 for CNN. We can see RHA is efficient and robust.

Fig. 4 and Fig. 5 shows some adversarial examples which
attack successfully for MLP and CNN, in which “GT” rep-
resents groud truth for clean HRRP, “Preds” represents the
classifier’s prediction for the adversarial example, “probs”
represents classifier’s confidence. The right most image in Fig.
4 and Fig. 5 shows the perturbation for each classifier which
was learned by RHA. From which we can see the magnitude
of perturbation is so small that when it be added to clean
HRRP, we can’t find it out. But it could make the recognition
accuracy drop sharply.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

706



0 50 100 150 200 250

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

GT: 0   Preds: 2   probs: 0.9675

0 50 100 150 200 250
0.000

0.025

0.050

0.075

0.100

0.125

0.150

GT: 1   Preds: 2   probs: 0.8067

0 50 100 150 200 250
0.00

0.05

0.10

0.15

0.20

0.25

GT: 2   Preds: 1   probs: 0.9994

0 50 100 150 200 250

0.0

0.1

0.2

0.3

0.4

0.5
perturbation

Fig. 4. Some adversarial examples which attack MLP successfully, the right most image shows the perturbation.
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Fig. 5. Some adversarial examples which attack CNN successfully, the right most image shows the perturbation.

TABLE III
AVERAGE RECOGNITION RATES OF THE RHA AT DIFFERENT

PERTURBATION LENGTH AND DIFFERENT CLASSIFIER

Method Avg. Recognition rate(%)

MLP (perturbation length = 8) 80.9%
MLP (perturbation length = 12) 73.1%
MLP (perturbation length = 16) 66.7%
MLP (perturbation length = 32) 51.1%
CNN (perturbation length = 8) 74.1%
CNN (perturbation length = 12) 68.5%
CNN (perturbation length = 16) 64.4%
CNN (perturbation length = 32) 45.7%

IV. CONCLUSION

Firstly, we verified adversarial examples also exist in the
field of HRRP-based RATR. Then we propose RHA, a robust
universal adversarial perturbation which could be placed in any
position in target region. Our experiments on HRRP recog-
nition show that RHA decrease recognition rate significantly
which indicate RHA is an effective adversarial attack method.
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