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Abstract— As an emerging localization method, vision-based 
localization methods have been widely used in vehicle safety 
system. By considering the practical requirements like the high 
accuracy, real-time performance and easy installation, we design 
a localization system for urban light rail based on the monocular 
camera. This system is divided into two parts: offline and online. 
To solve the problem of scene matching with high similarity, we 
proposed a new scene recognition method based on local key 
regions and key frames. This method not only guarantees the 
precision of scene matching but also satisfies the real-time 
requirement of the system. The offline module uses the 
unsupervised method to extracts the key region with 
discriminative information from high-similarity frame of 
reference sequences and selects the key frame based on it. The 
online module can quickly match the current frame and 
reference frame within the retrieval range provided by the key 
frame, by calculating the binary feature with a low correlation in 
the key regions. While meeting the high-precision needs of the 
light rail system, it significantly improves real-time performance. 
This paper uses both the public test dataset in Nordland and the 
challenging Hong Kong light rail dataset. The experiment results 
show that the proposed method can accomplish rapid and 
accurate light-rail localization at high frame rate. The precision 
can reach more than 90% in extreme situations such as large-
area scene occlusion. 

I. INTRODUCTION 

Nowadays, advanced driver assistance systems (ADAS) are 
widely used in vehicle scheduling systems to improve the 
safety and efficiency. As an important part of ADAS, the 
localization module should meet the requirements of real-time 
and higher accuracy. Currently, the Global Positioning 
System (GPS) is widely used in the vehicle localization 
system, and its accuracy can reach about 5 m, which applies 
to large-scale localization systems, such as the common 
intercity train dispatching system. Different from ordinary 
vehicles, the operating environment of urban light rail is often 
complex. The unstable signal in the ADAS system for light 
rail based on the Global Position System (GPS) poses a huge 
safety risk for train driving and scheduling [1]. 

In recent years, visual information plays an important role 
in the localization system and is widely used in vehicle and 
mobile robot navigation system [1-3]. Vision-based 
localization system continuously collects visual information 

during vehicle travelling and transforms it into topological 
map [4], which is stored in the database. The nodes and edges 
contained in the topological map represent the defined scenes 
and the relationships between scenes, respectively. When the 
vehicle enters the same scene again, the localization system 
locates the current position based on the current frame taken 
by the camera using scene matching to find the most similar 
node/scene in the topology map. In the light rail localization 
system, the topology map can be simplified to one-
dimensional scene chain. Meanwhile, the location information 
can be obtained by the route-based scene tracking algorithm. 

As matter of fact, scene matching is often interfered with 
condition changes such as illumination changes and partial 
occlusions. Therefore, infrared sensor [5], lidar [6], stereo 
camera [7] are widely used in localization system to extract 
the stable features of the scenes which are unaffected by 
drastic environmental changes. However, compared to the 
monocular camera, these methods rely on special sensors and 
do not have the advantages of low maintenance costs, and 
non-susceptible to external signal interference, etc. Hence, 
monocular camera-based visual localization system is still the 
hot area of research [8]. 

Since a train always runs in the wild where the scenes are 
always similar in a period, matching each live frame with 
reference frames in memory cannot tell the current location 
exactly with high confidence. Therefore, we proposed a 
binary feature extraction method based on key regions by off-
line processing and accomplish a real-time localization 
system for light rail with  monocular camera. The system is 
based on the following innovations: (i) the proposed 
unsupervised key region and key frame extraction method, 
which is suitable for reducing the  computational complexity 
of scene matching; (ii) a learning-based method to identify the 
binary feature of key regions which can be used in real-time.  

The paper is structured as follows. A summary of related 
works is given in section II. In section III, the details of the 
proposed method are described. The experimental results and 
some further discussion are given in section IV. Finally, some 
conclusions are drawn in section V. 

II. RELATED WORKS 
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Feature points are widely used in traditional algorithms to 
locate the stable feature, such as SIFT [9], SURF [10], and 
FAST [11]. With these feature points, local features can be 
extracted with different kinds of description methods, for 
example, SIFT [9], SURF [10], BRIEF [12], and ORB [13]. 
Feature points can be obtained in different formats, including 
difference images of Gaussian [9], responses of Fast-Hessian 
detector [10], or learning-based corner detectors [11]. Many 
algorithms were successfully developed in many matching 
systems, and they are good, but mainly focus on the local 
information within a small patch around the feature points, 
which would be unstable in the scene matching and 
recognition systems with huge illumination changes or 
viewpoint changes [14]. 

Recently, some feature extraction methods on the problems 
of visual-based localization systems were proposed. Scene 
signatures [14] is a viable way to extract stable features of a 
place with a dataset covering most extreme appearance 
changes. The feature detector for one place proposed in this 
paper was trained with abundant data captured in different 
conditions, such as sunny, raining, snowing, and deep 
darkness. Han et al. [15] proposed a Shared Representative 
Appearance Learning (SRAL) method, which integrates 
multiple image features and implements a vehicle localization 
algorithm based on this feature. Carlevaris-Bianco et al. [16] 
used 3 million training samples to track the stable features in 
the images that did not change with time.  

The neural network maps the training data into a lower-
dimensional feature space which is more robust than the 
hand-designed features. Focusing on the viewpoint-invariance 
and condition-invariance, Convolutional Neural Network 
(CNN) [17] was used to train a landmark detection to identify 
stable features [18]. In this algorithm, the Edge Boxes [19] 
provides the object-like regions as the candidates of the 
landmark. The potential landmarks are extracted from these 
candidates with the feature generated by CNN.  Arroyo et al. 
[20] design Convolutional Neural Network for Visual 

Topological Localization (CNN-VTL) method, which uses a 

large amount of training data to obtain scene features for 
vehicle localization. This kind of sample-based learning 
method requires to collect a large amount of scene 
information and conduct manual calibration, so the vehicle 
localization algorithm based on a single reference sequence 
still faces many challenges [21]. 

Our work is significantly different from former approaches. 
We just use a single reference sequence captured by a 
monocular camera to extract the discriminative information 
with an unsupervised method independently. The learning-
based method just requires to extract the binary feature of key 
regions in the real-time matching procedure. The most 
prominent advantage of our system is that neither requires a 
large training set nor relies on any special sensors. 

III. METHOD 

The detail of the proposed method will be given in this 
section. As shown in Fig. 1, the vision-based localization 

system for light rail contains offline and online two parts. To 
solve the problem of the high similarity of reference frames, 
the offline module extracts the key region with discriminative 
information for each reference frame and the frames having a 
outstanding appearance in video are regarded as key frames. 
The key regions in each frame are labeled firstly. The binary 
patterns of these key regions are generated, which are used to 
extract the binary features of the reference frames and current 
frames. In the online module, when the light rail is running on 
the same path as the reference sequence, we use the 
SeqSLAM method [23] to obtain a series of candidate 
matching reference frames within the retrieval range provided 
by the key frame. The best-matched reference frame for the 
current frame is identified by the binary feature verification to 

obtain the current location of the light rail. 

A. Key Region Detection 

The expected key regions contain the difference between 
high-similarity frames. We first establish the region of interest 
(ROI) in the frame for further key region detection. The 
frames in the vision-based localization contain 3 types of 
useless regions, including moving objects, railway track, and 
blur region near the boundaries. A rectangle with 300 pixels 
in the center of the frame was removed because of the 
temporary occlusion of the front train. The triangle regions 
containing the railway which is useless for localization were 
discarded. A margin of 40 pixels at the boundary of the frame 
is not in the ROI because of serious blur and distortion.  

All the pixels in the ROI record the overall information of 
the scene. This global information can locate the approximate 
position of the vehicle, such as the stop platform or the 
driving section. Only specific regions contain significant 
information that helps provide more accurate location 
information for the vehicle, known as the key region. The 
discriminative score is used to measure the saliency degree of 
the region within the frame. The higher the score is, the more 
significant the region will be. In this paper, the sliding 

 

Fig. 1 The framework of the proposed light-rail localization system. 
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window is used to sample the ROI for each frame to calculate 
the regional discriminative score. 

For instance, let us denote the query frame that we want to 
extract key regions as ft. The neighboring frames around the 
query frame consist of a set of F frames; for example, 4 
frames as shown in Fig. 2. When the sliding window moves to 
the position (x, y), as shown with red rectangle, patch R(x, y, 
ft) within this window is compared with co-located patches 
R(x, y, ft’) in other frames in the reference set. The 

discrimination score of R(x, y, ft) can be computed by 
summing these differences, as shown in (1). 

 


≠∈

=
ttf

ttfyxR

t

t
fyxRfyxRD

N
S

'
'),,(

'

)),,(),,,((
1

F,  
 

where D(RA, RB) is the function to compute the difference 
between patches RA and RB. R(x, y, ft’) is the reference patch in 
frame ft’. N is the number of the frames in the reference set. 
N=4 is used in Fig. 2 SR(x, y, ft ) is the summed geometric 
distance.  

The difference between two image patches can be 
measured by the summed absolute pixel intensity differences 
or the Euclidean distances of feature vectors. Our system uses 
a Histogram of Oriented Gradients (HOG) [22] features to 
calculate image patch differences to avoid the influence of 
illumination change. The discriminative score reveals the 
saliency of the image patch. As shown in Fig. 3(a), the 
discriminative power of each pixel was drawn with different 
colors. Red regions have a higher discrimination score than 
blue regions.  

Pixels that have higher distance than a predefined threshold 
Tk, is regarded as within the key region. Hence key regions 
can be obtained by grouping those pixels together. Fig. 3(b) 

shows a sample of extracted key regions. The white regions 
are the extracted key regions. 

B. Key Frame Extraction 

The discriminative score of a frame can be calculated by 
summing the score of all key regions within this frame. The 
key frames are expected to contain specific information in a 
sequence of video over some time. Therefore, the key frames 
can be defined as the frames which have higher 
discrimination score compared with not only remote frames in 
the sequence but also neighboring frames, so that the online 
matching module can get a high-confidence matching.  

The key frame extraction method consists of two steps. 
Firstly, video frames with the local maximal discriminative 
score are extracted and these frames are sorted in descending 
order according to the discriminative score. Secondly, the 
former Nk frames are taken as the key frame. 

C. Learning-based Binary Features Extraction 

The extracted key regions method proposed in this paper 
reduce the area of scene matching and computational 
complexity. On this basis, the system can focus on some local 
visual information with high resolution to identify an accurate 
location. The local visual information can be extracted by the 
statistic method, such as HOG or SIFT feature. However, the 
high computational complexity makes these methods not be 
efficient for the real-time system. At the same time, this kind 
of floating-point feature descriptor using Euclidean distance 
to calculate feature similarity is responsible for the matching 
process very time-consuming. To improve the efficiency of 
feature extraction and matching process, a variety of binary 
feature descriptors come up, such as BRIEF and ORB, which 
are designed mainly for general local feature description 
within a rectangle patch. Especially, the ORB features are 
based on corner point description, and binary feature 
extraction mode is obtained by learning method. In this paper, 
a learning-based binary descriptor is proposed, which 
contained higher discriminative information for irregular key 
regions descriptor. A novel saliency analysis and greedy 
algorithm are used in this approach. 

The descriptors can be obtained by cascading binary 
comparisons result of a series of pixel pairs. A powerful 
binary feature means to have pixel pairs which can make the 
current query frame outstanding from its neighboring frames. 
The proposed method is used to extract the pixel pairs with 
the strongest discrimination power. A discrimination score is 
used to evaluate the power of the pixel pairs to separate the 
current query frame from others. The discriminative score of a 
pixel pair P can be calculated with (2). 
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where S(P, Fq) is the pixel difference of P in query frame 

Fq, and D(P, Fi) is the pixel difference of pixel pair P in the ith 
neighboring frame. M is the quantity of the neighboring 
frames near the query frame. 

All pixel pairs were sorted with the discrimination scores in 
descending order. And we can choose the first N pixel pairs to 
identify the query frame. However, the comparison results of 

(1) 

  
Fig. 2 Discrimination power computed by summing Euclidean distance 

(2) 

  
(a)                                                     (b) 

Fig. 3 The discrimination power of ROI and the selected key region 
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similar pixel pairs always have high correlation although the 
discrimination score of them are both high. For instance, if we 
choose the pixel pair P((x1, y1), (x2, y2)) with high 
discrimination score, the neighboring pair 
P((x1+1, y1+1), (x2+1, y2+1)) may have the similar high score 
and be chosen as well. The information of binary descriptor 
generated by choosing the pixel pair based on the 
discrimination may be reduced. Therefore, the pairs with low 
correlation should further be identified. 

Principal Component Analysis (PCA) is one of the most 
useful methods to identify the principal dimensions of the 
data. However, it is not suitable for our system, because there 
are only a few training samples, which cannot provide 
sufficient data for PCA to extract the desired number of 
dimensions. Therefore, the PCA method cannot be used to 
identify point pairs with low correlation. A greedy method is 
used in our approach to check all possible pixel pairs in the 
key region, which can identify good pixel pairs with high 
discrimination scores and low correlations. 

In this paper, the greedy algorithm based on cross-
correlation numbers can extract high-quality binary features. 
The training set using in the greedy algorithm consists of the 
current frame and several frames in its neighborhood. First of 
all, the pixel difference of all possible pixel pairs in both the 
query frame and neighboring frames are calculated to 
establish the training matrix T.  Assuming that the current 
frame contains K pixels and M adjacent frames in the key 
region, the number of all pixel pairs becomes K×(K-1)/2 and 
the training matrix is established with K×(K-1)/2 rows and 
M+1 columns. Each row in the training matrix represents the 
distribution of the pixel difference of the one-pixel pair from 
the training set. The iterative training process is as follows: 

1. All rows of the training matrix are sorted by the 
discrimination scores so that the pixel pair of the first row has 
the highest discrimination score.  

2. The first row in matrix T is moved into the result matrix 
R to initialize the result matrix. 

3. We extract the next row in matrix T and calculate the 
correlations between this row and all rows in matrix R. 

4. If all correlations are smaller than the predefined 
threshold C, put this row into result matrix R and go to stage 3, 
otherwise, go to stage 3 directly. 

5. If the number of rows in the result matrix reaches the 
predefined N, the iteration stops. 

6. If T is empty, stop the iteration. 

The pixel pairs in the result matrix can be used to compute 
the binary feature of the test frame. Fig. 4 shows a sample of 
the extracted pixel pairs. The two endpoints of each line are 
the pixel pair and the color represents the discrimination score 
of this pair. Each line represents a pixel pair that contains two 
pixels on the two endpoints of the line. Pixel pairs with low 
discrimination scores are drawn in blue while those with high 
discrimination scores are drawn in red. In the rest of the paper, 
we entitle our approach as a "Learning-based Binary Feature 
Approach" or simply say our approach. 

IV. EXPERIMENTS 

In our experimental work, the extracted key regions, key 
frames, and binary scene features based on machine learning 
were used to match the test sequence with the reference 
sequence. We use the desktop computer as the processing 
platform. 

A. Dataset 

The experiment used a light-rail dataset provided by Mass 
Transit Railway (MTR) in Hong Kong and Nordland dataset 
published by Norwegian Broadcasting Corporation (NRK) 
[23]. The dataset of Hong Kong light rail transit (LRT) was 
collected from route 507, containing 3 sets of video sequences, 
containing a total of 13,859 frames. Each set of video 
sequences contains two sequences, which are collected from 
the same train running on the same path at different times. 
The two video sequences in the Hong Kong MTR data set 
were captured by monocular cameras installed in light-rail 
vehicles with a video resolution of 640×480 and a frame rate 
of 25 frames per second. Due to the different collection time, 
the illumination condition, and train speed are all different in 
these two sequences. All frames are manually calibrated. The 
Nordland database contains four sequences collected in four 
seasons with a video resolution of 1920×1080 and a frame 
rate of 25 frames per second. In this paper, 10000 frames are 
used as training and testing data and down-sampled to 
640×480. The four sequences keep running at the same speed. 
Therefore, the frames with the same index number were 
collected from the same location. 

B. Evaluation with Single Frame Scene Recognition 

The extracted key frames and key regions in the reference 
sequences were used to lock tracking with scene recognition. 
Therefore, the quality of key frames and key regions should 
be evaluated by the quality of scene recognition. The key 
frames are expected to lock the tracking by providing a high 
confidence matching score when the train comes into the 
same position with the most similar scene appearing again in 
the current frame. 

In the experiment, we compared the following four 
different methods of scene recognition, including the method 
based on global feature and the method based on the local key 
region. We used the HOG feature to evaluate the quality of 
key regions in the scene matching. The evaluation criterion is 
the mean error deviation of the matching result and the 
ground truth. 

 
Fig. 4 Extracted pixel pairs 
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Firstly, the Global HOG feature means that the whole video 
frame is described by one HOG descriptor by using this to 
calculate the difference between two images. Secondly, to 
retain the relative position information of video frame content, 
we divided each video frame into 40×40 non-overlapping 
macroblocks and the HOG features of each block are 
calculated separately. The current frame and the reference 
frame were matched with the corresponding macroblocks. 
Thirdly, to evaluate the performance of ROI in this paper, we 
only considered the macroblocks within the ROI.  At last, the 
HOG feature in the key region is the proposed method which 
only matches the current frames and reference frames with 
HOG features of connected key regions. 

After matching the current sequence with the reference 
sequence, for each current frame, the difference of frame 
indices between the beat matched reference frame and ground 
truth reference frame which is called error offset were 
recorded. The absolute average value of these differences, 
called average error offset, is used to evaluate the precision of 
4 methods. The unit of this average error is a frame. The ideal 
situation with this error approaching zero means that all 
current frames are matched with the corresponding ground 
truth reference frame. Ideally, this offset is close to zero, 
which means that all matching results are the same as the 
ground truth. As shown in Table �, the proposed method 
based on the key region has the lowest average error offset. 
Macroblock-based HOG feature has the highest time 
complexity, and the matching time of each frame reaches 
62.42s. However, the average error offset increased by 0.16 
frames when using ROI to reduce the computation time for 
scene matching. Comparing with global HOG feature, using 
the HOG feature in the proposed key region reaches a trade-
off between computation time and quality. 

 
 
 
 
 
 
 
 
 
 
As described above, the key region of the current frame is 

determined by the discriminative score and the predefined 
threshold Tk. Tk is an adaptive threshold in our system because 
the discriminative scores in each frame are distributed on 
different scales. So it cannot use the unified absolute 
threshold. For example, the range of the discriminative score 
in a key frame has far higher than that in the non-key frame. 
Therefore, the threshold Tk is indirectly adjusted by the 
coefficient K. is the product of the average significance score 
within the frame and the coefficient K. The Tk of a key frame 
is the product of the average discrimination score and the 
coefficient K. In the following parts, we will give some 
discussions about this coefficient K. 

Firstly, we test the computation time of scene recognition 
under different coefficient values. The range of coefficient K 
is from 0 to 1.40. As shown in Fig. 5, as the coefficient K 
goes up from 0.75, the computation time of scene recognition 
decreases rapidly. Therefore, the large coefficient K value 
makes it possible to apply the approach to single scene 
recognition in the real-time system. The main reason is that 
less number of regions are defined as key regions when a 
larger coefficient K is used. The smaller key regions allow the 
HOG feature to be generated faster. The basic cell size of the 
HOG feature in our system is fixed as 10 pixels so that 
smaller key regions means fewer cells in the description area 
and the computational complexity of the HOG feature is 
reduced. The HOG feature used in this system has a fixed 
basic cell. The use of a smaller key region means that the 
number of cells in the description region is reduced, thus 
reducing the computational complexity of the HOG feature. 

The percentage of the key region area in the entire video 
frame under different values of coefficient K shown in Fig. 6 
proves our supposition. For each frame, the proportion of the 
key region area to the whole frame was recorded. The vertical 
axis is the average proportion of the key region of all frames 
in the dataset. We can see that the percentage of key regions 
drops off as the coefficient K increasing. When K equals zero, 
it means that all pixels in the ROI are regarded as key regions. 
In this case, the proposed method keeps the system only 
focused on a quarter of the frame rather than the whole frame. 

The trend of computation time and the percentage of key 
region area reveals the high efficient of a large coefficient. 
When the coefficient K increases from 0 to 1.4, the 
computation time of scene recognition drops from 4 seconds 
to 0.039 second and the percentage of key region drops from 
25% to 0.76%. However, a large coefficient K leads frames to 

TABLE   I 
COMPUTATIONAL TIME AND MATCHING OFFSET OF MATCHING 

 

Method 
Matching offset 

(frame) 
Computational time 

(Second) 
Global HOG feature 15.24 0.0593 
Local HOG feature 2.10 62.4205 
HOG feature in ROI 2.26 13.5960 
HOG feature in Key 
Region  (Proposed ) 

1.44 3.6058 

 

 
Fig. 5 Computation time of scene recognition with key regions extracted 

with different coefficients 

 
Fig. 6 Percentage of key region area 
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face the risk of the non-key region. Fig. 7 shows that when K 
becomes larger than 1.1, some of the frames in the dataset 
will fail to identify the key regions. The percentage of frames 
without key regions will increase when larger K is used. 
These frames without any key regions require to match with 
all pixels in the ROI, which will reduce the efficiency of 
scene recognition.  

To determine the most appropriate value of coefficient K, 
we used all available values of K in the dataset for scene 
recognition and calculated statistics of average error deviation. 
A set of different cell sizes using the HOG feature was also 
used to make the result more credible.  The set of different 
cell sizes were obtained by changing the parameter N in 
formula (1). We tested 7 different sizes of cells which range 
from 5 to 50. Fig. 8 shows the error rate of scene recognition 
under each kind of parameter selection.  

The vertical axis is the error rate of matching, which has 
the same definition in the first part of this subsection. The 

bars with different colors present different cell sizes. The 
error rate indicates that if K is too large, it gives a high 
matching error, such as 1.4. This huge error rate shows that 
although the most powerful key regions are selected, due to 
the too few pixels are selected, and visual information is 
limited and the recognition procedure will be affected by the 
noise. We can notice that the lowest error rate appears when 
the coefficient K equals 1.05. This result gives us a 
recommendation value of coefficient K, which has the best 
accuracy of scene recognition and acceptable efficiency. The 
key regions extracted with a coefficient K of 1.05 can be used 
to do the further training procedure of binary feature 
extraction.  

C. Evaluation with Multi-frame Scene Tracking 

Multi-frame scene tracking was tested by using the 
Nordland dataset. The tracking module first uses the 
SeqSLAM [23] algorithm to match the current sequence with 
the reference sequence and then obtain a set of candidate 
reference frames. SeqSLAM, like a scene sequence matching 
method, is widely used in path-based visual localization 
algorithms [24-26]. The global features in SeqSLAM were 
generated by the down-sampling normalized image with a 
resolution of 32*24 pixels. The similarity of frames was 
measured by the first norm distance between the current 
frame and the reference frame in SeqSLAM. Lower distance 
between two frames means that they have a similar 
appearance. These results are verified by the binary feature in 
the matching module. The higher matching score means that 
the two frames were taken in the same place. The precision is 
used to evaluate the performance of the tracking result. The 
true positive (TP) is defined as that a positive sample is 
formed near to the ground truth position within 3 frames. 
Otherwise, the positive sample is regarded as a false positive 
(FP). The precision can be calculated by TP/(TP+FP). 

Fig. 9(a) shows the matching distance distribution of 13 
mismatched frames in SeqSLAM. We recorded the distance 
distribution of 20 frames around the ground truth. The vertical 
axis is the matching distance and the horizontal axis is related 
frame index in the temporal domain. About 10 frames before 
and after the ground truth have a similar matching distance 
and it makes the SeqSLAM tracking module can hardly 
identify the best-matched frame. When these frames were 

 

(a) Distribution of matching distance of SeqSLAM (b) Distribution of matching score of binary feature (c) Distribution of matching distance frequency based 

bi f
 

Fig. 9 This method is compared with the results of SeqSLAM in high frame rate scene matching 

 
Fig. 7 Percentage of frames without key region 

 
Fig. 8 Error rate of scene recognition with different cell sizes and 

coefficient K 
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verified by the binary feature, the matching scores always 
have a peak on the ground truth frame, as shown in Fig. 9(b). 
This indicates that the Learning based Binary feature 
Approach only gives low matching distances in ground truth 
locations and allows the matching module to provide an 
accurate result with higher confidence. 

Furthermore, to verify the performance of the binary 
feature proposed in this paper, we also calculate the 
distribution of the binary matching scores of the true positive 
and false positive in SeqSLAM with the whole dataset. Fig. 9 
(c) gives a proof for our assumption. The blue curve is the 
frequency of the true positives and the red curve is that of 
false positives. These two curves are separated significantly 
with a Hamming distance of 75. Therefore, our approach can 
distinguish similar frames and improve the precision of the 
SeqSLAM tracker. 

The Table � shows the precision, matching offset and 
matching time of the two tracking algorithms. The precision is 
improved to 99.36% by using the binary feature approach 
proposed in this paper. The matching offset decreased by 
36.07% without significantly increasing the scene matching 
time. These results show that the Learning based Binary 
feature Approach can provide more significant visual 
information for scene recognition. Thus the approach can 
obtain more accurate matching, while the global feature in 
SeqSLAM can only provide a rough matching result. 

 
 
 
 
 
 
 

 

 

D. Evaluation for Keyframe-based Retrieval Mechanism 

To verify the necessity of keyframe-based retrieval 
mechanism, we compare the proposed scene tracking method 
with global tracking and local tracking. Fig. 10 shows the 
tracking route of the three scene matching methods, where the 
black curve represents the ground-truth path and the white 
curve represents the matching result. All the tracking methods 
make use of the key region detection and the learning-based 
binary features extraction proposed in this paper.  

The global tracking method calculates the similarity 
between the current frame and all reference frames, to retrieve 
the reference frame with the globally optimal matching in the 
whole reference sequence. The disadvantage of this method is 
that it is easily affected by other similar scenes in the path. As 
shown in Fig. 10 (a), due to the problem of vehicle occlusion, 
it directly jumps to other similar scenes. When the scene is 
severely disturbed, the global tracking will take similar scenes 
of other road sections as localization results.  

The local tracking method only matches the current frame 
and the reference frame within the neighbourhood of the last 
matching result, which makes full use of the spatial 

constraints between scenes. However, its disadvantage is that 
when the empirical tracking results are not good, it will 
directly affect the results and cause cumulative errors. As 
shown in Fig. 10 (b), the failure is caused by the cumulative 
tracking error which lead the route to deviating from the 
correct range after several consecutive wrong matches.  

In Fig. 10 (c), the scene matching result (white curve) 
almost coincides with the ground truth (black curve) because 
the keyframe-based retrieval mechanism guarantees the 
correctness of the scene tracking result. Though, at the red 
dotted line, the trajectory score of the reality tracking route is 
not globally optimal. The experimental results show that the 
scene matching method based on key frame retrieval 
mechanism can reduce the matching offset to an acceptable 
range and avoid the cumulative error, which can effectively 
reduce the interference of scene matching caused by some 
extreme conditions in Hong Kong LRT dataset. 

V. CONCLUSIONS 

The LRT localization system based on monocular camera 
has the advantages of simple acquisition equipment and good 
application prospects. The main difficulty of the system is the 
high computational complexity and low accuracy. Therefore, 
we proposed a light rail localization method based on key 
regions and unsupervised learning. The extraction of key 
regions not only improves the accuracy of single scene 
recognition but also reduces the computational time cost. 
Secondly, we design a new saliency measurement standard to 
realize binary features extraction in key regions. Finally, this 
paper implements a real-time localization system for light rail 
based on a single viewpoint video. The experimental results 

Fig. 10 Tracking routes of the three scene matching methods. (a) Global 
tracking method. (b) Local tracking method. (c) The proposed method. 

TABLE   � 
PRECISION AND COMPUTATION TIME OF SCENE TRACKING 

 

 SeqSLAM Proposed method Δ (%) 

Precision 89.56% 99.36% +9.80 
Matching offset

（frame） 
1.3652 0.8728 -36.07 

Time（ms） 53.23 54.82 +2.99 
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show that the Learning based Binary Feature Approach raises 
the matching accuracy and the computation time is extremely 
low, which is suitable for real-time applications. 
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