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Abstract—In this work, we propose a sound event detection 
system based on a parallel capsule neural network. The system 
takes advantage of the capability of capsule neural networks in 
the detection of overlapping objects. It further develops a 
parallel architecture and uses the kernel design of different 
shapes and sizes to effectively utilize the feature information to 
increase the detection accuracy. The experimental results show 
that the performance of the proposed system is as low as 
52.34% measured by the error rate, which is even lower than 
the rank 1 system in DCASE2017 challenge.  

Keywords—Computational Auditory Scene Analysis, Sound 
Event Detection, Deep Learning, Capsule Neural Network  

I. INTRODUCTION  
In the past, humans used the human auditory system to 

identify sound events in the environment. With the 
development of computing technology, humans began to 
classify and detect sound data and derived more applications. 
Many research experts and scholars engaged in related 
research, such as the calculation of auditory scene analysis 
(CASA) [1], [2]. In 1990, Breman proposed auditory scene 
analysis [2] to promote CASA, and enhanced by Slaney [3]. 
In 1997, Sawhney presented the first study on acoustic scene 
classification (ASC) [4], [5]. The academic community has 
been actively engaged in reaching solutions to SED (sound 
event detection) problems. Since 2016, detection and 
classification of acoustic scenes and events (DCASE) 
competitions have been held regularly every year. 

In recent years, due to the vigorous development of 
machine learning technology in artificial intelligence 
applications, many related researches began to develop on 
the basis of machine learning and deep learning. Taking 
DCASE2017 for example, many participants used CNN 
network architecture as the basis of system design. However,  
a conventional CNN network has its limitation in dealing 
with overlapping sound events, which makes it hard to 
improve the accuracy in the detection of multiple events. 
Vesperini et. al. used a capsule neural network (Capsnet) 
that has advantages for overlapping object detection [6] to 
effectively improve the performance of CNN in overlapping 
sound events [7]. This study expands the neural network 
into a parallel network architecture with the design of 
different sizes and shapes of the kernel to effectively utilize 
the original feature information. As a result, the 

performance of the proposed system is improved 
substantially. 

This paper is organized as follows: it presents the 
proposed system, including single capsule networks and 
parallel capsule networks, in Section II. The experimental 
environments setting and results are discussed in Section III. 
Finally, Section IV concludes this work. 

II. PROPOSED SYSTEM 
The proposed system architecture, consisting of the 

feature extraction, CNN layers, and the capsule neural 
network, is shown as in Fig. 1.  

Fig. 1. The architecture of the proposed Capsnet system. 

A. Feature preprocessing 
All the audio data in the data set is down sampled to 

16000Hz and then the log-Mel spectrogram is obtained 
through the procedure, shown as the flowchart in Figure 2. 
We apply STFT to compute 1024 points for each frame by 
using Hamming Window first. Then, the resulted STFT 
spectrogram is filtered by 40-band mel-scale fitter banks and 
then been taken logarithm to generate the log-mel 
spectrogram.  

 

Fig. 2. Flowchart of generating log-mel spectrograms from audio 
waveforms. 
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B. Single Capsule Neural Network  
The concept of using a capsule neural network 

architecture originates from its advantage in detecting 
overlapping events and its application in sound event 
detection [7]. Our proposed single capsule network 
architecture is represented in Fig. 1.  

The parameters used in the proposed system are 
carefully chosen based on different experimental results. 
The proposed system includes two convolutional layers. The 
first convolutional layer performs a convolution over the 
input spectrogram with 4 filters and the second 
convolutional layer is with 16 filters in which the kernel 
shape is the same as the first convolutional layer. The width  
and the height of kernels in each layer are not symmetrical, 
that is not a squared kernel. The width and the height of 
kernel are 3 and 7, respectively,  where 3 is in the frequency 
domain and 7 represents the axis in the time domain. The 
activation function used for kernels in both convolutional 
layers is rectifier linear units (ReLU).  

There are two max-pooling layers which are placed 
separately between two convolutional layers and after the 
second convolutional layer. Specifically, max-pooling is 
only applied to the axis representing the frequency domain.  

After CNN layers it fed output to the Primary Capsule 
Layer. Then the capsule layer is closely connected the L 
capsules, where L is the number of categories, i.e., sound 
events. Because the previous layer is also a capsule layer, a 
dynamic routing algorithm  is used to calculate the output. 
Finally, it calculates the Euclidean length of each output 
capsule and generates the classification results.  

C. Covered Area by Convolution and Pooling 
As mentioned previously, our proposed method 

emphasizes on the importance of feature in the time domain 
on both kernel design and pooling process. Because the 
temporal resolution is more important than that in the 
frequency domain for sound event detection, no pooling is 
used in CNN layers to preserve enough temporal 
information. Therefore we need to slightly enlarge the 
kernel size to get more time information for effective feature 
extraction. In the frequency domain, similar to many 
conventional CNNs, a two-to-one maximum pooling is used. 
Our system design aims to reduce the complexity of the 
network, e.g., the number of CNN layers and the amount of 
necessary data acquisition, while the performance is 
maintained. We then discuss the influence of the covered 
area on both the kernel size and the pooling function. 

Different kernel sizes will extract different features. 
Intuitively, the larger the kernel size is, the more 
information the extracted points represent, which refers that 
each output of a kernel carries information of more input 
points when the kernel size increases. The covered area 
defined by C for an output point with the specific kernel size 
in CNN layers is formulated as (1). 

    C = # + %-1 #-1                              (1) 
where 𝑚 is the size of the kernel and 𝑙 is the number of 
convolution layers. In addition, when we take the pooling 
layer into consideration, the coverage C of a point will be 
enlarged and can be formulated by (2). 
          C = 2$ + 2$-'()-1)$

'                                   (2) 
 

As illustrated in Figure 3, this example shows that one 
output depicted by the blue point carries information 
affected to 5 points in the original resolution when it is 
located on layer 2 with kernel size 3 in each layer. 

 
Fig. 3. Covered area by two convolution layers with kernel size 3  

A pooling function can rapidly increase the covered area. 
In Figure 4, the covered area of the affected points by 
pooling is demonstrated. In this example, the blue point is 
the current output with two layers of pooling and totally 10 
points are covered in the original data region when it is 
located on layer 2 with kernel size 3 in each layer.  

 

Fig. 4. Covered area by two convolution layers with pooling and kernel 
size 3  

In our system, we have good results when we choose 
kernel size 7 in the time domain. That means this kernel size 
can preserve enough information to effectively present the 
original data. Further increasing the size may obtain better 
results but the complexity cost will increase, too. That may 
not be a practical realization. In the frequency domain, since 
we have used pooling, it is not necessary to take a large 
kernel size. If a large kernel size is chosen, the coverage will 
be too large so that the extracted features are not sensitive to 
details. The detailed experimental results are shown in 
Section IV. 

D. Parallel Capsule Neural Network 
In this section, we introduce the proposed parallel 

capsule neural networks with two types, early fusion and 
late fusion, in detail. First, each of the both systems has 
three parallelized convolution layers with three different 
kernel sizes which are determined as (3, 3), (5, 3), (7, 3), 
respectively. The reason for choosing different kernel sizes 
is to get detailed information on different resolutions.  Other 
parameters of the Primary layer and the Digit layer remain 
the same as that in the single architecture. 

The difference between the proposed two types is that 
the early fusion system concatenates the outputs of the 
parallel neural networks before sending them into the 
primary layer, as shown in Fig. 5. On the contrary, the late 
fusion system sends outputs of each network directly into 
the primary layers and concatenates the output to the digit 
layer, as shown in Figure 6. Both architectures allow the 
digit layer to access all features generated from parallel 
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CNN layers. However, the early fusion version might mix 
up the features generated from different CNNs too early in 
the system and degrade the function of parallelism. On the 
other hand, the late fusion architecture is able to keep the 
features from different CNNs more “pure” until the last full 
connection. Therefore, it is expected the late fusion version 
will perform better in the parallel architecture.   

 
Fig. 5.  Parallel capsule neural network (Early fusion) 

 
Fig. 6. Parallel capsule neural network (Late fusion) 

 

III. EXPERIMENTAL SETTINGS 
This section describes the specifications of software and 

hardware, tools, and databases used in the experiments. In 
feature extraction, we use librosa library [8]. The 
experimental environment is shown as in Table I. 

TABLE I.  SIMULATION ENVIRONMENT 

 

 

 

A. Dataset 
 

The data we use is TUT Sound Event 2017 [9], which is 
a database created in 2017 for DCASE. The database 
contains development datasets [9] and evaluation dataset [9]. 
Dataset is recordings of street acoustic scenes for a total of 

121 minutes with 6 different labels. The 6 labels are brakes 
squeaking, car, children, large vehicle, people speaking, and 
people walking. 

 

B. Evaluation Metrics [10] 
 

The error rate (ER) is the main scoring standard for 
DCASE 2017. The ER score is calculated from an 
intermediate statistic of one second. It is the sum of  
substitution number (𝑆(𝑘)), insertion number (𝐼(𝑘)), and 
deletion number (𝐷(𝑘)). ER is calculated as  

                (3) 
 
              ! " = min	()* " , ),("))                        (4) 
             ! " = max	(0, +, " -+.("))                    (5) 
             ! " = max	(0, +, " -+.("))                     (6) 
  
where	 𝑁(𝑘) is the total number of active groundtruth events. 
Since the error rate is based on substitution number, 
insertion number, and deletion number, it is possible to be 
greater than 1. Substitution number 𝑆(𝑘) is the case when 
the system detects an event in a given segment, but gives it a 
wrong label. 𝐼(𝑘) is after counting the number of 
substitutions per segment, the remaining false positives in 
the system output are counted. 𝐷(𝑘) is after counting the 
number of substitutions per segment, the remaining false 
negatives.  
 

IV. EXPERIMENTAL RESULTS 
First, we used the data set provided by  DCASE 2017 

sound event detection competition to train the Capsule 
Neural Network. Then we compared it with DCASE2017 
Baseline [9] and the first place architecture of  DCAE2017 
competition [11]. As shown in Table II, Our Capsule Neural 
Network resulted in the best performance. The 
preprocessing to get features for all works is to get the same 
log-mel spectrograms. After that, we also tried different 
kernel sizes by referring to the method proposed in [12]. As 
shown in Table III, the best combination of the kernel size is 
3  in the frequency domain and 7 in the time domain, which 
obtained  57.12% in error rate. The increasing of the kernel 
size in the time domain results in better performance. 
However, a large kernel size in the frequency domain does 
not improve the performance. This can be explained by the 
discussion on the covered area in Section II-C.  

TABLE II.  COMPARISON OF CAPSULE NEURAL NETWORK WITH 
DCASE2017 BASELINE AND FIRST CRNN ARCHITECTURE 

Network Feature Error Rate 
Baseline [9] mbe 0.9358 
CRNN [11] mbe 0.7914 
Capsnets [7] mbe 0.58 
Capsnets (Single) mbe 0.5712 
Capsnets (Early) mbe 0.5347 
Capsnets (Late) mbe 0.5234 
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TABLE III.  COMPARISON OF DIFFERENT KERNEL SIZE 

Networks Kernel Size Error Rate 
Capsnets 3x3 0.7105 
Capsnets 3x5 0.7414 
Capsnets 3x7 0.8011 
Capsnets 5x3 0.6343 
Capsnets 5x5 0.6765 
Capsnets 5x7 0.7052 
Capsnets 7x3 0.5712 
Capsnets 7x5 0.5831 
Capsnets 7x7 0.5968 
 

Based on the simulation results shown in Table IV, we 
also use different kernel sizes in the proposed parallel 
capsule network introduced in Section II-D and the results 
are represented in Table IV.  The error rates of each 
combination of kernel size for early and late fusion structure 
are shown. The results show that the late fusion performs 
better than the early fusion. The possible reason is that the 
late fusion system can separate the features generated from 
each CNN till the last full connection stage and avoid early 
mixture of features to loss feature details.  

For further analyzing, we change one pooling strategy in 
one of the three parallel capsule neural network. As shown 
in Table IV, average pooling in kernel size (3,3) is with 
better performance than max pooling. The reason is that the 
parallel system can learn both background information by 
average pooling and significant  features by max pooling at 
the same time and results in better performance.  

TABLE IV.  COMPARISON OF SYMMETRIC KERNEL AND ASYMMETRIC 
KERNEL 

Network Feature Kernel Size Error Rate 
Capsnets(Early) mbe (3,3)(5,5)(7,7) 0.5639 
Capsnets(Early) mbe (3,3)(5,3)(7,3) 0.5498 
Capsnets(Late) mbe (3,3)(5,5)(7,7) 0.5611 
Capsnets(Late) mbe (3,3)(5,3)(7,3) 0.5321 
 

TABLE V.  COMPARISON OF DIFFERENT POOLINGS IN PARALLEL 
CAPSULE NEURAL NETWORKS 

Network Feature Kernel 
Size 

Pooling Error Rate 

Capsnets(Early) mbe (3,3) Max 0.5498 
(5,3) Max 
(7,3) Max 

Capsnets(Early) mbe (3,3) Average 0.5347 
(5,3) Max 
(7,3) Max 

Capsnets(Late) mbe (3,3) Max 0.5321 
(5,3) Max 
(7,3) Max 

Capsnets(Late) mbe (3,3) Average 0.5234 
(5,3) Max 
(7,3) Max 

 

V. CONCLUSION 
In this paper, we proposed the architecture of Parallel 

Capsule Neural Networks which includes asymmetric 
kernels and different pooling with log-mel spectrogram 
input. The parallel architecture uses different kernel sizes 
and pooling functions to capture different features for 
classification. The experimental results show that the error 
rate can be reduced to 52.34%, which is 26% better than the 
first place of DCASE challenge 2017, and 5% better than 
the state-of-the-art system. The proposed system is able to 
detect multiple and overlapped events. It exhibits great 
potential for many applications such as autonomous vehicle 
driving.  
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