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Abstract—Pronunciation fluency scoring (PFS) is a primary
task in computer-aided second language (L2) learning. Most
of existing PFS algorithms are based on supervised learning,
where human-labeled scores are used to train the scoring model.
However, the human labeling is rather costly and tends to
be biased. In order to tackle this problem, we propose an
unsupervised learning approach, where an infoGan model is
constructed to infer latent speech codes, and then these codes
are used to build a classifier that distinguishes native and foreign
speech. We found that this native-foreign classifier can generate
good utterance-based fluency scores.

I. INTRODUCTION

Language learning become more and more popular now-
days. A lot of language learners want to practice their
pronunciation and test their oral English level. Computer-
Assisted Pronunciation Training (CAPT) become important
when huaman scoring is subjective and the feedback is not
timely. In terms of feedbacks, it can be classified into two
categories: mispronunciation type feedback can indicate spe-
cific error types, score feedback can indicate goodness of
pronunciation. mispronunciation type feedback is mostly used
in pronunciation training, while score feedback is more used
in pronunciation evaluation task.

CAPT still has following difficulties: non-native speech data
is hard to collect and annotate. Neural network needs lots
of data to train but collecting and annotating data will cost
a lot. The consistency of manual socring between humans
is unsatisfactory. Because of data limitation, pronunciation
scoring of early stage mainly based on template [1]. Teacher
and student read same scripts, and teacher’s speech feature is
used as template to compute the distance with student acoustic
feature. Truong [2] used a binary classifier to distinguish
confusing phone pairs. Lee [3], under the condition of low
resources, compared MFCC, gaussian posteriorgrams and En-
glish phoneme state posteriorgrams ,and found that transfering
knowledge from rich resources language can benfit scoring
task. Kyriakopoulos [4] used siamese phone distance feature
with attention mechanism to predict scores. some of researches
[5-7] used ASR frameworks to scoring. Native data are easier
to collect than non-native, so they use native speech as training
data to score non-native pronunciation, but there are some
mismatchs in channel and speaker and other factors. Some

work [8-9] tried to use speaker normalization to reduce the
influence of mismatch. those methods are text denpendence.

Since the supervised learning methods need a lot of labeled
data and the templated methods need same speech contents
from both teacher and student. Some researchers tried to
use unsupervised learning and parameter sharing methods to
reduce the cost of annotation. Wang [10] and Miao [11] used
DNN posterior as feature to unsupervised cluster, they tried to
discover mispronunciation pattern of second language learners
and replaced human annotation. [12] used a subspace Gaus-
sian mixture model trained with both phonetic and prosodic
features to predict human rated fluency scores on read spoken
by non-native learners of Mandarin.

Most of the methods scored segments and supersegments
separately. We intend to score non-native speech by using
its similarity with native speech. The more scores distribution
of non-native speech similar to the native speech, the higher
the score, it’s a text independence method. GAN as one of
unsupervised model has successfully used in many domains.
InfoGan [13] as a kind of GAN variants, it decomposed GAN’s
unstructured noise vector into two parts: incompressible noise
and latent code which can learn the latent data distribution.
InfoGan has been successfully used in image recognition. We
proposed to use infoGan as feature extractor to learn the native
and non-native data distribution, then use classifier to predict
pronunciation scores. We also compare two mapping methods
of frame level score to utterance level: the mean of each frame
and native-templated Jensen-Shannon (JS) distance.

The paper organized as fellows: section 2 will introduce in-
foGan and softmax scoring framework, section 3 will intrduce
experiment corpora and setups, results and discussion will be
in section 4, and conclusion will be section 5.

II. INFOGAN SCORING FRAMEWORK

This section will introduce infoGan and different methods
of combining frame level score to utterence and speaker level.

A. InfoGan

The GAN formulation uses a simple factored continuous
input noise vector z, while imposing no restrictions on the
manner in which the generator may use this noise. As a
result, it is possible that the noise will be used by the
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generator in a highly entangled way, causing the individual
dimensions of z to not correspond to semantic features of
the data. Rather than using a single unstructured noise vector,
infoGan decompose the input noise vector into two parts: (i)
z, which is treated as source of incompressible noise; (ii) c,
which called the latent code and targeted the salient structured
semantic features of the data distribution. So we will provide
the generator both noise and latent code c, but in standard
GAN, the generator is free to ignore the additional latent
code c by finding a solution satisfying PG(x|c) = PG(x).
So infoGan propose an information-theoretic regularization:
there should be high mutual information between latent codes
c and generator distribution G(z, c). Thus I(c;G(z, c)) should
be high. The mutual information term I(c;G(z, c)) is hard
to maximize directly as it requires access to the posterior
P (c|x). Then infoGan obtain a lower bound of it by defining
an auxiliary distribution Q(c|x) to approximate P (c|x), so it
add a classifier Q to achieving training objectives. InfoGAN
is defined as the following minimax game with a variational
regularization of mutual information and a hyperparameter λ:

min
G,Q

max
D

VInfoGAN (D,G,Q) = V (D,G)−λLI(G,Q) (1)

where

min
G

max
D

V (D,G) = E
x∼pdata

[logD(x)]+

E
z∼noise

[log(1−D(G(z)))]
(2)

It disentangle both discrete and continuous latent factors,
scale to complicated datasets, and typically requires no more
training time than regular GAN, because Q and D share the
hidden layers.

B. Scoring Methods

We have used two ways to score utterences: the first is using
the mean of each frame scores in an utterence as utterence
score and using the mean of each utterence as speaker score.
Second is using the JS distance as scores.

JS(P‖Q) =
1

2
KL(P (x)‖P (x) +Q(x)

2
)+

1

2
KL(Q(x)‖P (x) +Q(x)

2
)

(3)

where KL(P‖Q)

KL(P‖Q) =
∑

P (x)log
P (x)

Q(x)
) (4)

Kulback-Leibler (KL) distance, also known as relative entropy,
is a method of discribing the difference between two proba-
bility distributions P and Q. It is asymmetrical, which means
KL(P‖Q) 6= KL(Q‖P ).

JS distance measures the similarity of two distributions, it’s
a variant of KL distance and solves the problem of asymmetry
of KL distance. So JS distance is symmetrical, and its value is
between 0 and 1. In non-native dataset. We count the number
of frame scores at 0-10 and 10-20 and so on at utterence and
speaker level. We can get a 10-dimsional vector that discribing

the number of frames per score level, then it is normalized to 0-
1 through dividing it by total number of frames of an utterence
or speaker. In the native dataset, we count the frames of whole
dataset to form a template vector, so the vector pairs from
native and non-native can be used to calculate JS distance.

C. Framework Detail
We try two ways of using infoGan. The one is using Q as

classifier and the other is using Q as feature extractor. The
framework is shown in Fig. 1.

Fig. 1. InfoGan scoring framework.

In infoGan, Q’s ouptut size are equal to latent code size c.
We test different latent code size c and let it learn different
information. We use both native and non-native data as training
set. The discriminator discriminate real or fake data. The Q
classifier can classify native or non-native data. The confidence
score that be classified as native is the score of each frame.
In the training process, labels can be generated randomly. The
model can learn the relationship between features and labels.

III. EXPERIMENT CORPORA AND SETUPS

A. Speech Corpora
The corpora used in study consist of four parts. Training

sets consist of 10 hours WSJ as native corpus and 10 hours
Chinese speaking English (CSE) dataset as non-native corpus.
The testing set are TIMIT which is native English corpus,
and ERJ [14] which is Jpanese speaking English corpus. the
ERJ corpus has 2000 sentences and timit has about 1.7 hours.
The above duration does not include slient segment. The ERJ
corpus has annotated with utterence and speaker level scores,
it contains 190 speakers. The Pearson correlation coefficient
of utterence scores between humans is 0.55 and of speaker
level is 0.796.

B. Expriment Setup
We use Kaldi toolkit to get 40-dimensional Fbank feature,

and use Cepstral Mean and Variance Normalization (CMVN)
method to reduce speaker difference, and VAD method to
remove silent segment. The infoGan model have three parts.
the generator have 4 layers, two dense layers have 1024 and
128 nodes respectively and two deconvolution layers. The
discriminator and Q share the hidden layers, it consists of one
convolution layer and one dense layer which have 64 and 128
nodes respectively. Q has softmax output layer which same
size with latent code c and can be changed, D has 1 output
layer with 2 nodes.
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C. Evaluation Metric

Pearson correlation coefficient, also known as Pearson
product-moment correlation coefficient (PPMCC or PCCs), is
used to measure the correlation between two variables X and
Y (linear correlation), whose value is between -1 and 1.

1) When the correlation coefficient is 0, the X and Y
variables have no relationship.

2) When the vlaue of X increases (decreases), and the
value of Y increases (decreases). the two variables are
positively correlated and the correlation coefficient is
between 0.00 and 1.00.

3) When the vlaue of X increases (decreases), and the
value of Y decreases (increases., the two variables are
negatively correlated and the correlation coefficient is
between -1.00 and 0.00.

ρX,Y =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
) (5)

cov(X,Y) is covariance of variables X and Y, σ is the standard
deviation.

IV. RESULTS AND DISCUSSION

First, we use Q as a binary classfier. The input of infoGan
are WSJ and CSE data and no label is given. We want to
figure out that whether infoGan can learn the distribution of
two dataset through mutual information or not.

Fig. 2. Unsupervised classification result of timit.

Fig. 3. Unsupervised classification result of ERJ.

Fig. 2. shows the testing result of ERJ. Fig. 3. shows the
testing result of timit. From above figures, we know that the
infoGan can learn the distribution of different dataset, but what

kind of distributions still need to be futher studied, it can be
channel or other environmental factors. So we use timit instead
of WSJ to test model. Most of ERJ frames can be classified
into non-native class and most of timit frames are classfied into
native class. The model can classify the timit and ERJ with
a totally unsupervised way. However, using Q as a classfier,
the scoring result are not accurate enough. We want to further
explore the Q can generate a better feature embedding.

We use Q as feature extractor, and use those feature softmax
binary classifier to discriminate native or non-native speech.
The output of it is two-dimensional posterior probability, those
are the probability of the frame being classified as native or
non-native. We use the native dimension probability as score
of a frame. we static the number of score at different level.
The results are shown in Fig. 4. and Fig. 5.

Fig. 4. Score distribution of ERJ.

Fig. 5. Score distribution of timit.

In the Fig. 4. and Fig. 5, x-axis means scores in 0 to
100. The y-axis means the number of frames in each scores
level and total number of frames ratio. From the figures
we can see the native speech’s score are more concentrated
in high segemnts, and the score of non-native speech are
more like uniform distribution. This is also in line with our
understanding, the non-native’s pronunciation level are uneven.

We set latent coede c size 10, then we further explore the
different output size can impact the scoring or not, we try
utterence level score and speaker level score.

We use UTT MEAN, UTT JS to denote uttenerce level
methods: mean and JS distance, similarly, SPK MEAN,
SPK JS denote speaker level mean and JS diatance methods.
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The table 1 shows different latent code size. We use it as
binary classifier input feature, as the size increase, the PCCs
between model score and human score are higher, c = 10 get
the best performance. At utterence level, the mean of each
frame’s score have more higher PCCs than JS distance. This
because the number of frames in a sentence is too small to
describe the distribution, so the mean of each frame scores
perform better. At speaker level, the JS distance have higher
PCCs than the method of taking the mean. When we set c =
2, we compare the infoGan and infoGan + softmax methods,
the infogan+softmax methods perform better both in utterence
and speaker level.

TABLE I
EXPERIMENT RESULTS

C UTT MEAN UTT JS SPK MEAN SPK JS MODEL
2 0.036 0.031 0.031 0.074 infoGan
2 0.059 0.025 0.025 0.096 infoGan+softmax
3 0.057 0.016 0.019 0.122 infoGan+softmax
5 0.051 0.081 0.168 0.223 infoGan+softmax
7 0.137 0.099 0.161 0.232 infoGan+softmax
10 0.201 0.157 0.274 0.310 infoGan+softmax
12 0.050 0.060 0.107 0.121 infoGan+softmax
14 0.068 0.121 0.214 0.245 infoGan+softmax

V. CONCLUSION

We use infoGan to score non-native speech at both utterance
and speaker level. First is using Q as binary classifier, it
can learn the native and non-native data distribution on a
unsupervised way, second is using Q as feature extractor, then
use softmax to score,before the latent code c it shows as the
Q feature dimension increase the correlation the human score
are higher. The infoGan+softmax performs better than infoGan
method. In utterence level scoring, the mean of frames score
are better than JS distance, it may because the number of
frames in a utterence are too small to describe a distribution.
But in speaker level, each speaker have more frames to
describe distribution, so the JS distance are perform better
than mean mtehod.
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