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Abstract—The reliability of chiller is very important for the safe 

operation of refrigeration system. In order to solve the problem 

that the traditional linear discriminant analysis (LDA) based on 

𝑳𝟐  norm is sensitive to outliers, this paper introduced a novel 

dimensionality reduction algorithm for chiller fault data set – 

RSLDA. Firstly,  𝑳𝟐,𝟏  norm is used to extract the most 

discriminant features adaptively and eliminate the redundant 

features instead of 𝑳𝟐 norm. Secondly, an orthogonal matrix and 

a sparse matrix are introduced to ensure the extracted features 

contain the main energy of the raw features. In addition, the 

recognition rate of the nearest classifier is defined as the 

performance criteria to evaluate the effectiveness of 

dimensionality reduction. Finally, the reliability of algorithm was 

verified by experiences compared with other algorithms. 

Experimental results revealed that RSLDA not only improves 

robustness but also has a good performance in the Small Sample 

Size problem (SSS) of fault classification. 

I. INTRODUCTION 

As the key equipment of refrigeration system, chiller is 

mainly used to provide cold source to maintain stable 

temperature for IDC (Internet Data Center) room [1]. The 

occurrence of the chiller fault not only reduces the performance 

of the refrigeration system but also shortens the service life 

cycle of the equipment. Especially, the loss of data stored in the 

computers leads to serious or even irreparable economic losses. 

Thus, discovering potential faults and hidden danger in the 

process of operation of chillers in time can guarantee the 

reliability and security of IDC. Refrigeration system of IDC is 

shown as Fig. 1. 
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Fig. 1   Refrigeration system of Internet Data Center. 

The real-time running data of the equipment are collected by 

setting up multiple sensors, and the quantitative indicators from 

the time domain, frequency domain and other aspects that can 

fully comprehensively reflect the fault state are selected [2][3]. 

However, sensor faults may lead to outliers in the collected data. 

Furthermore, traditional linear discriminant analysis requires 

sufficient train data to avoid the Small Sample Size problem 

(SSS) [4], which makes it difficult to deal with the small-scale 

data with high- dimension [5]. In view of the above problems, 

it is particularly important to find a dimensionality reduction 

method that can effectively eliminate redundant information, 

improve the robustness of outliers and overcome the SSS 

problem to improve the accuracy of fault diagnosis. 

The purpose of dimensionality reduction is to find a most 

discriminating low-dimensional subspace to replace the raw 

high-dimensional space and ensure the minimum loss of 

information in the process. Dimensionality reduction is the key 

to solve the problem of " curse of dimensionality " in the field 

of pattern recognition and machine learning, because it not only 

reduces the complexity of data, but also improves the 

efficiency and accuracy of the classification algorithm. 

Dimensionality reduction techniques can be divided into 

feature selection approaches and feature extraction approaches. 

Feature selection approaches aim to select the most important 

or representative feature subset from the raw feature set, and all 

the selected features can be found in the raw feature set. Feature 

extraction approaches transform raw features into a new feature 

space with lower dimensionality and the newly constructed 

features are usually non-linear combinations of the raw features. 

Dimensionality reduction can be divided into unsupervised and 

supervised dimensionality reduction according to whether the 

samples are labelled or not. Principal component analysis 

(PCA) [6] is the most classical unsupervised dimensionality 

reduction method. Its goal is to learn a set of projection vectors 

so that the variance of given data in low dimensional feature 

space is maximized. However, the most serious disadvantage 

of PCA is that the category information in the training set is not 

taken into account in classification tasks. Linear Discriminant 

Analysis (LDA) [7] is the most popular supervised 

dimensionality reduction method, which is designed to find a 

projection matrix that maximizing between-class covariance 

and minimizing within-class covariance. That is, LDA aims to 

find the vector that maximizes the Fisher criterion function [8] 

as the optimal projection direction.  

The objective function of traditional LDA is calculated 
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based on 𝐿2  norm. The projection direction obtained is 

unstable when the training data set includes outliers. Because 

the square operation in the 𝐿2 norm amplifies the influence of 

outliers [9]. Although the influence of outliers can be mitigated 

by assigning smaller weights to outliers [10], it is difficult to 

determine the optimal value of weighted parameters. 

Compared with 𝐿2  norm, 𝐿1  norm is more robust to outliers 

because the absolute value operation reduces the influence of 

outliers. Based on this, many related algorithms have been 

proposed. A method of maximizing 𝐿1 norm in feature space is 

proposed by Nojun Kwak [11], which not only achieves the 

robustness to outliers, but also has the invariance of rotation. 

However, it is easy to fall into the problem of local optimal 

solution because the obtained projection is calculated one by 

one through greedy search strategy. To solve this problem, 

Feiping Nie et al. [12] proposed a principal component analysis 

algorithm based on non-greedy strategy, which made all 

projection directions optimized. L1-LDA algorithm 

theoretically overcomes the problem of singular solution of 

LDA intraclass scattering matrix based on  𝐿1  norm and 

achieves robustness to outliers [13]. A new linear discriminant 

analysis method, LDA-L1, which maximizes the ratio of inter-

class dispersion to intra-class dispersion by using 𝐿1  norm 

instead of 𝐿2  norm, and solves a series of local optimal 

projection vectors through iteration algorithm,  was proposed 

in dimensionality reduction [14]. Lu G F et al. [15] proposed a 

new linear discriminant analysis method based on sparse 𝐿1 

norm, SLDA-L1, which finds the optimal projection vector that 

maximizes the inter-class scattering matrix and minimizes the 

intra-class scattering matrix, and regularizes the base vector by 

using the elastic network, where the 𝐿1 norm is used for both 

robust modeling and sparse modeling, are proposed. In addition, 

this paper also proposed an effective iterative algorithm for 

SLDA-L1. A new robust feature selection method with joint 

𝐿2,1 norm minimization in both loss function and regularization 

are proposed [16]. In addition, an effective algorithm to 

minimize the norm of 𝐿2,1 is proposed and the effectiveness of 

the algorithm is proved. Reference [17] proposed a new 

effective robust classification algorithm based on 𝐿2,1  norm 

and gave the objective of regularized 𝐿2,1 norm minimization 

model. The advantages of this algorithm are as follows: firstly, 

the loss function is robust to the outliers in the sample; 

secondly, the regularization phase can select the samples of the 

feature group in the whole training set, which has reasonable 

sparsity. Reference [18] proposed a robust linear discriminant 

dimension reduction method based on 𝐿2,1  norm, RLDA, 

which takes the class weighted mean points instead of the class 

mean points as the class center points to suppress the influence 

of outliers. In addition, an efficient iterative algorithm for 

solving optimization problems is proposed and its convergence 

is proved. Reference [19] put LDA on top of a deep neural 

network and proposed the deep linear discriminant analysis 

(DeepLDA) for classification problems. DeepLDA has good 

performance on the large-scale image datasets.  But, this paper 

mainly focused on the conventional linear discriminant 

analysis methods on the dimensionality reduction tasks with 

small scale water chiller fault data. 

To overcome the SSS problem, numerous extensions of 

LDA have been proposed, For example, Regularized LDA 

(RLDA) [20], Orthogonal LDA (OLDA) [21] and so on.  

Inspired by Ref. [22], RSLDA is introduced to the field of 

dimensionality reduction for fault data in this paper. Based on 

𝐿2,1, an orthogonal matrix and a sparse matrix are employed to 

preserve the main energy of the raw feature. Different from the 

traditional LDA, the adopted method is more flexible in 

dimensionality selection and more robust to outliers. The main 

contributions of this paper can be summarized as follows: 

(1) A novel robust dimensionality reduction algorithm 

via joint 𝐿2,1 norm with LDA is introduced in fault 

diagnosis to suppress the influence of outliers for 

improving the accuracy of fault diagnosis. 

(2) The method has a good performance in the small-

scale data with high-dimensionality. 

(3) The method is more flexible in dimensionality 

selection. 

The remainder of this paper is arranged as follows: In 

Section Ⅱ, the traditional LDA algorithm and K-Nearest 

Neighborhood (KNN) are briefly reviewed; Section Ⅲ 

introduces the RSLDA algorithm in detail; Data Preparation 

and Experimental Process are introduced in Section Ⅳ; Section 

Ⅴ presents our experimental results and makes corresponding 

analysis; The conclusion is presented in section Ⅵ. 

II. RELATED WORK 

A. Norm Specification 

This paper use lowercase bold letters and uppercase bold 

letters to represent vectors and matrices, respectively. 

Assuming there is a vector 𝒂 ∈ 𝑹𝑛, the 𝐿𝑝 norm is calculated 

as: 

‖𝒂‖𝑝 = (∑ |𝑎𝑖|
𝑝𝑛

𝑖=1 )
1

𝑝⁄  .                     (1) 

Where 𝑝 ≥ 1 is a real number [17]. For a matrix 𝑨 = {𝑎𝑖𝑗} ∈

𝑹𝑚×𝑛, where 𝒂𝒊 and 𝒂𝒋 represent the row and column vectors 

of matrix A respectively. The 𝐿𝑝 norm of matrix A is calculated 

as: 

‖𝑨‖𝑝 = (∑ ∑ |𝑎𝑖𝑗|
𝑝𝑛

𝑗=1
𝑚
𝑖=1 )

1
𝑝⁄  .                 (2) 

When 𝑝 = 2, the 𝐿𝐹 norm of the matrix A is calculated as: 

‖𝑨‖𝐹 = √∑ ∑ 𝑎𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1  .                       (3) 

The 𝐿2,1 norm of the matrix A is calculated as: 

‖𝑨‖2,1 = ∑ √∑ 𝑎𝑖𝑗
2𝑚

𝑖=1
𝑛
𝑗=1 =∑ ‖𝒂𝑖‖

2
𝑛
𝑗=1  .             (4) 

B. Mathematical Preparations 

Hermitian Matrix: Transposition is equal to the matrix 

itself, which means that every element of the ith row and the 

jth column of the matrix is equal to the conjugate of the element 

of the jth row and the ith column: 

𝑿𝑇 = 𝑿 .                                       (5) 

Generalized Rayleigh Entropy: If x is a non-zero vector 

and A and B are Hermitian matrices, then 

   R(𝑨, 𝑩, 𝒙) =
𝒙𝑻𝑨𝒙

𝒙𝑻𝑩𝒙
  .                             (6) 
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Equation (6) denotes the generalized Rayleigh entropy of A and 

B. The maximum eigenvalue of 𝑩−𝟏𝑨 is its maximum. 

Singular value decomposition of matrix: Any real matrix 

M can be decomposed into the product of the three matrices:  

𝑴 = 𝑼𝑫𝑽𝑻.                                    (7) 

Where U and V are both orthogonal matrices. The column 

vector of U is the eigenvector of 𝑴𝑴𝑻and the column V is the 

eigenvector of 𝑴𝑻𝑴. 

C. Traditional Linear Discriminant Analysis (LDA) 

Given a high-dimensional dataset X=[ 𝑥1, 𝑥2, … … , 𝑥𝑁 ] ∈
𝑹𝑑×𝑛 where d and n represent the dimension and number of the 

raw feature, respectively. The goal of LDA is learning a linear 

projection matrix W ∈ 𝑹𝑑×𝑚 (𝑚 ≤ 𝑑)  which makes the 

projection points from the same class as close as possible and 

the projection points from different classes as far as possible. 

After mapping the raw high-dimensional feature space 𝒙𝒊 ∈ 𝑹𝑑 

into the low-dimensional space 𝒚𝒋 ∈ 𝑹𝑚 . The projection 

formula is shown as follows, 

𝒚𝒋 = 𝑾𝑻𝒙𝒊 .                                    (8) 

Fig. 2 illustrates that the projection effect of the left is 

superior to that of right. 

 

Fig. 2   The projection effect with different projection directions. 

Assuming there are c classes in dataset and each class has 𝑛𝑖 

samples, the total number of samples is 𝑛 = ∑ 𝑛𝑖. 𝑥𝑗
𝑖 denotes 

the jth training sample of the ith class where i=1,2,……c, 

j=1,2,……𝑛𝑖. According to the Fisher criterion, LDA needs to 

maximize the distance of projection points from different class 

𝐿𝑏  and minimize the distance of projection points from the 

same class 𝐿𝑤, 

𝐿𝑏 = ∑ 𝑛𝑖‖𝑦�̅� − �̅�‖2
2𝑐

𝑖=1   .                             (9) 

𝐿𝑤 = ∑ ∑ ‖𝑦𝑗
𝑖 − 𝑦�̅�‖2

2𝑛𝑖
𝑗=1

𝑐
𝑖=1   .                        (10) 

where 𝑦�̅� and �̅� denote the class center of the ith class sample 

and the class center of all samples after projection, 

respectively, 𝑦𝑗
𝑖 denotes the projection point of 𝑥𝑗

𝑖. According 

𝒚𝒋 = 𝑾𝑇𝒙𝒊, the objective function of traditional LDA can be 

obtained, 

𝐽(𝑾) =
∑ 𝑛𝑖

𝑐
𝑖=1 (𝑦�̅� − �̅�)((𝑦�̅� − �̅�)𝑇

∑ ∑ (𝑦𝑗
𝑖 − 𝑦�̅�)

𝑛𝑖
𝑗=1

𝑐
𝑖=1 (𝑦𝑗

𝑖 − 𝑦�̅�)
𝑇
 

=
∑ 𝑛𝑖𝑾

𝑇𝑐
𝑖=1 (𝑥�̅� − �̅�)((𝑥�̅� − �̅�)𝑇𝑾

∑ ∑ 𝑾𝑇(𝑥𝑗
𝑖 − 𝑥�̅�)

𝑛𝑖
𝑗=1

𝑐
𝑖=1 (𝑥𝑗

𝑖 − 𝑥�̅�)
𝑇

𝑾
 

=
𝑾𝑇𝑆𝑏𝑾

𝑾𝑇𝑆𝑤𝑾
  .                             (11) 

where T denotes the transposition operation,  �̅� =
1

𝑛
∑ ∑ 𝑥𝑗

𝑖𝑛𝑖
𝑗

𝑐
𝑖=1  denotes the mean feature of all samples and 𝑥�̅� =

1

𝑛𝑖
∑ 𝑥𝑗

𝑖𝑛𝑖
𝑗=1  denotes the mean feature of the ith class.  𝑆𝑏  and 𝑆𝑤 

denote the inter-class divergence matrix and intra-class 

divergence matrix of the feature space respectively. The 

calculation formulas are as follows: 

𝑆𝑏 = ∑ 𝑛𝑖
𝑐
𝑖=1 (𝑥�̅� − �̅�)((𝑥�̅� − �̅�)𝑇 .                    (12) 

𝑆𝑤 = ∑ ∑ (𝑥𝑗
𝑖 − 𝑥�̅�)

𝑛𝑖
𝑗=1

𝑐
𝑖=1 (𝑥𝑗

𝑖 − 𝑥�̅�)
𝑇 .                 (13) 

According to the Fisher criterion, the formula of the optimal 

projection matrix is obtained as follows: 

𝑾𝑜𝑝𝑡 = arg max
𝑾

𝑇𝑟(𝐽(𝑾)) = arg max
𝑾

𝑇𝑟(𝑾𝑇𝑆𝑏𝑾)

𝑇𝑟(𝑾𝑇𝑆𝑤𝑾)
 .     (14) 

Where Tr(.) denotes the trace of matrix. The transformation 

matrix W is composed of eigenvectors corresponding to the 

first m eigenvalues of 𝑆𝑤
−1𝑆𝑏  according to the generalized 

Rayleigh entropy. Generally，the optimal solution of (14) is 

equivalent to solving the following problem, 

   𝑾𝑜𝑝𝑡 = arg min
𝑾𝑇𝑾=𝑰

𝑇𝑟(𝑾𝑇(𝑆𝑤 − 𝜆𝑆𝑏)𝑾).            (15) 

where 𝜆 is a small positive constant to balance the importance 

of the inter-class divergence matrix 𝑆𝑏  and intra-class 

divergence matrix 𝑆𝑤 . Since only (𝑐 − 1)  of between-class 

scatter matrix is independent, the highest dimension of LDA to 

reduce is (𝑐 − 1) [23]. 

D. K- Nearest Neighborhood (KNN) 

Nonparametric classification methods are a type of 

estimation methods that bypass probability and go directly to 

posterior probability estimation rather than determine the 

posterior function by parameter estimation [24]. As one of the 

simplest algorithms of nonparametric classification methods, 

the K-Nearest Neighborhood (KNN) needs reference data 

points for both classes. Secondly, each test sample is attributed 

the same class label as the label of the majority of its K nearest 

(reference) neighbors. Third, the Euclidean distance between 

the test point and all the reference points are calculated to find 

K nearest neighbors, and finally take the reference points 

corresponding to the k smallest Euclidean distances after 

sorting the obtained distances in ascending order [24]. 

III. ROBUST SPARSE LINEAR DISCRIMINANT ANALYSIS 

A. Motivation and Problem Formulation 

𝐿1  norm and 𝐿2,1  norm have stronger robustness than 𝐿2 

norm [22]. Based on this, a more robustness projection matrix 

obtained by employed this constraint of 𝐿2,1  norm is as 

follows: 

min
𝑾

𝑇𝑟(𝑾𝑇(𝑆𝑤 − 𝜆𝑆𝑏)𝑾) + 𝜆1‖𝑾‖2,1, 

subject to 𝑾𝑇𝑾 = 𝑰.                         (16) 

where W∈ 𝑹𝑑×𝑚 (𝑚 ≤ 𝑑) is the projection matrix, 𝜆1 is a 

trade-off parameter. The variants of the PCA constraint are 

introduced into the objective function (16) to preserve the 

discriminative information: 

min
𝑾,𝑷

𝑇𝑟(𝑾𝑇(𝑆𝑤 − 𝜆𝑆𝑏)𝑾) + 𝜆1‖𝑾‖2,1 ,   
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subject to 𝑿 = 𝑷𝑾𝑇𝐗 , 𝑷𝑇𝑷 = 𝑰 .              (17) 

where P∈ 𝑹𝑑×𝑚 is an orthogonal matrix. By introducing the 

constraint, RSLDA can reserve the main energy of the raw 

feature set after dimensionality reduction. Acquired data set 

often includes outliers in real application, so a spare term is 

imposed to reduce the effect of outliers. Therefore the objective 

function can be rewritten as follows: 

min
𝑾,𝑷,𝑬

𝑇𝑟(𝑾𝑇(𝑆𝑤 − 𝜆𝑆𝑏)𝑾) + 𝜆1‖𝑾‖2,1 + 𝜆2‖𝑬‖1 ,   

subject to 𝑿 = 𝑷𝑾𝑇𝑿 + 𝑬 , 𝑷𝑇𝑷 = 𝑰 .              (18) 

where 𝜆2 denotes a trade-off parameter, E denotes error and 

is used to fit outliers. 

B. An Efficient Algorithm to Solve the Problem 

Alternating Direction Method of Multipliers (ADMM)[18] 

is introduced to solve the optimization problem of (18). The 

minimization problem and constraints in (18) are transformed 

into augmented Lagrangian functions. As shown in (19): 

𝐿(𝑷, 𝑾, 𝑬, 𝒀) =  𝑇𝑟(𝑾𝑇(𝑆𝑤 − 𝜆𝑆𝑏)𝑾) + 𝜆1‖𝑾‖2,1

+ 𝜆2‖𝑬‖1     + 〈𝒀, 𝑿 − 𝐏𝑾𝑇𝐗 − 𝑬〉  

+
𝛽

2
‖𝑿 − 𝐏𝑾𝑇𝐗 − 𝑬‖𝐹

2

=  𝑇𝑟(𝑾𝑇(𝑆𝑤 − 𝜆𝑆𝑏)𝑾) + 𝜆1‖𝑾‖2,1

+ 𝜆2‖𝑬‖1 + 𝒀𝑇(𝑿 − 𝑷𝑾𝑇𝑿 − 𝑬)

+
𝛽

2
‖𝑿 − 𝑷𝑾𝑇𝑿 − 𝑬‖𝐹

2  

        = 𝑇𝑟(𝑾𝑇(𝑆𝑤 − 𝜆𝑆𝑏)𝑾) + 𝜆1‖𝑾‖2,1 + 𝜆2‖𝑬‖1 

−
1

2𝛽
‖𝒀‖𝐹

2 +
𝛽

2
‖𝑿 − 𝐏𝑾𝑇𝐗 − 𝐄 + 𝐔‖𝐹

2 .          (19) 

where Y is Lagrange multipliers, 𝑼 =
𝒀

𝛽
and 𝛽 is a penalty 

parameter. The iterative algorithm updating the parameters by 

minimizing the Lagrangian function is shown as follows in 

detail. 

Step 1: Update W with P, E fixed by solving the problem of  
𝜕𝐿

𝜕𝑾
= 0: 

L(𝐖) =  𝑇𝑟(𝑾𝑇(𝑆𝑤 − 𝜆𝑆𝑏)𝑾) + 𝜆1‖𝑾‖2,1 + 𝜆2‖𝑬‖1 

+
𝛽

2
‖𝑿 − 𝑷𝑾𝑇𝑿 − 𝑬 + 𝑼‖𝐹

2 .                     (20) 

let 𝑴 = 𝑿 − 𝑬 + 𝑼 , by solving the problem of  
𝜕𝐿

𝜕𝑾
= 0 , 

where  
𝜕𝐿

𝜕𝑾
= 2(𝑆𝑤 − 𝜆𝑠𝑏)𝑾 + 𝜆1𝑫𝑾 + 𝜷(𝑿𝑿𝑻𝑾 − 𝑿𝑴𝑻𝑷).    (21)              

Step 2: Update P with W, E fixed by solving the problem of 

(22), 

arg min
𝑷

𝛽

2
‖𝑿 − 𝐏𝑾𝑇𝑿 − 𝑬 + 𝑼‖𝐹

2  

                             = arg min
𝑷

𝛽

2
‖𝑴 − 𝑷𝑾𝑇𝑿‖𝐹

2  

↔ arg min
𝑷

𝛽

2
𝑇𝑟(𝑴𝑇𝑴 − 2𝑴𝑇𝑷𝑾𝑇𝑿) 

↔ arg max
𝑷

𝛽

2
𝑇𝑟(𝑴𝑇𝑷𝑾𝑇𝑿)  

↔ max
𝑷

𝑇𝑟(𝑷𝑇𝑴𝑿𝑇𝑾).                          (22) 

Let 𝑆𝑉𝐷(𝑴𝑿𝑇𝑾) = 𝑼𝑺𝑽𝑇, therefore P is obtained by 𝑼𝑽𝑇 , 

where SVD denotes the operation of singular value 

decomposition. 

Step 3: Update E with W, P fixed by solving the problem of 

(23): 

  arg min
𝐸

𝜆2‖𝑬‖1  +
𝛽

2
‖𝑿 − 𝑷𝑾𝑇𝑿 − 𝑬 + 𝑼‖𝐹

2                 (23) 

Step 4: Update Y and 𝛽  respectively by the following 

equation: 

𝒀 = 𝒀 + 𝛽(𝑿 − 𝑷𝑾𝑇𝑿 − 𝑬)                      (24) 

𝛽 = 𝑚𝑖𝑛 (𝛽𝑚𝑎𝑥 , 𝜌𝛽)                          (25) 

where 𝜌  is constant. The iteration stops when the 

convergence conditions are met. The algorithm is presented in 

TABLE Ⅰ in detail. 
TABLE Ⅰ 

Detailed steps of the algorithm. 
 

Algorithm. An Efficient Algorithm to Solve the Problem (18) 

Input: data matrix X=[𝒙𝟏, 𝒙𝟐, … … , 𝒙𝑵]∈ 𝑹𝒅×𝒏 , 

label matrix Y=[𝒚𝟏, 𝒚𝟐, … … , 𝒚𝑵] ∈ 𝑹𝒏   

parameter 𝜆1 = 10−5, 𝜆2 = 10−6 

The final dimension: m 

Initialization: W=0;E=0;Y=0;P=arg 𝐦𝐢𝐧
𝑷𝑻𝐏=𝑰

𝒎𝒊𝒏

𝑷𝑻𝐏=𝑰
𝑻𝒓(𝑷𝑻(𝑺𝒘−𝝀𝑺𝒃)𝑷), 

β = 0.1; ρ = 1.01; 𝛽𝑚𝑎𝑥 = 105; 𝜆 = 10−4 
repeat 

update  W by solving (21) 
update  P by solving (22) 

update  E by solving (23) 

update  𝒀 ← 𝒀 + 𝛽(𝑿 − 𝑷𝑾𝑻𝑿 − 𝑬)  

        𝛽 ← 𝑚𝑖𝑛 (𝛽𝑚𝑎𝑥, 𝜌𝛽) 

until convergence 

Output: transformation matrix W∈ 𝑹𝒅×𝒎 (𝑚 ≤ 𝑑) 

IV. DATA PREPARATION AND EXPERIMENTAL PROCESS 

C. Data Preparation 

ASHRAE 1043-RP provides monitoring data of the 

refrigeration Machine under various working conditions and 

different fault conditions [24]. The diagram of experimental 

device is shown in Fig. 3. The system is instrumented with  
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Fig. 3   The diagram of experimental device. 
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Fig. 4   Location of sensors on evaporator. 
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Fig. 5   Location of sensors on the condenser. 

temperature, flow and position sensors in the water circuits, 

and pressure and temperature sensors in the refrigerant circuit 

[26]. Locations of the sensors in the water circuits are shown 

in Fig. 4 & 5. 

The experiment collected a total of 64 parameters with 10s, 

and the data collection interval was 10s. Among them, 48 

parameters were directly collected by the sensor, including 29 

temperature parameters, 7 valve position parameters, 5 

pressure parameters, 3 power parameters, 2 flow parameters, 2 

state parameters. The remained 16 parameters were obtained 

through real-time calculation with VisSim software. 7 typical 

faults are simulated in this experiment as shown in TABLE Ⅱ. 

In order to further analyze the characteristics of each dimension, 

the 64-dimensional parameters of 430 samples are visualized 

respectively. Fig. 6 shows the visualization of the 6-

dimensional parameters of different fault conditions selected 

from the collected parameters. 

B. Design ideal of Dimensionality Reduction 

This paper designed and implemented each combination of 

dimensionality reductions and classification algorithm in 

different fault conditions, and the specific process is shown in 

Fig. 7. 

TABLE Ⅱ 

 Summary of faults of the refrigeration system  

Health 

Condition 

Description of Fault Category 

Label 

Healthy Normal 1 

 

 

 

False 

Condenser Fouling 2 

Non-Condensables in Refrigerant 3 

Excess Oil 4 

Refrigerant Leak 5 

Refrigerant Overcharge 6 

Reduced Condenser Water Flow 7 

Reduced Evaporator Water Flow 8 

 

 

Fig. 6   Visualization of the 6-dimensional parameters 
in different fault conditions. 

 

Step 1: Collect data sample of different working conditions 

by sensors, and build high-dimensional fault samples by 

feature extraction and selection. 
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Step 2: Normalize samples and divide them into training 

samples and testing samples. 

Step 3: Select training samples as input of LDA, RLDA and 

RSLDA, and obtain transformation matrix respectively. 

Step 4: The low-dimensional samples are obtained by 

dimensionality reduction of training and test samples through 

the transformation matrix. 

Step 5: In order to compare the effects of dimensionality 

reduction processing with non-dimensionality reduction 

processing, take the raw samples and the obtained low-

dimensional samples as the input of KNN respectively, and 

take accuracy of the fault diagnosis as the evaluation index of 

dimensionality reduction. 

 

The equipment of refrigeration system

Collect a large number of  information 

in different working conditions

. . . . . .
multi-channel 

sensors

Feature extraction and selection

High-dimensional feature set

Training samples Testing samples

Low-dimensional

 train samples

Low-dimensional

 test samples

KNN

Accuracy of the fault diagnosis

(evaluation index of dimensionality reduction) 

LDA RLDA RSLDA

dimensionality reduction

 
 

Fig. 7   Dimensionality reduction process. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, chillers fault data set RP1043 obtained from 

American Society of Heating Refrigerating and Air-

Conditioning Engineers are employed to evaluate the 

effectiveness. This paper adopted the 1-nearest-neighbor 

algorithm as the classifier and take its recognition rate as the 

index to measure the effect of dimensionality reduction. In 

addition, all experiments are executed on a computer with 

windows 10 operation system with Matlab R2016b. 

A. Discussion of Parameters 

In the experience of discussing the effect of parameters, this 

paper selects the first 70 percent of samples each class as the 

training dataset, the dimension is 7 after dimensionality 

reduction. 

K designated by users is the initial size of analysis window 

in KNN. Theoretically, the smaller K is, the more precise 

distribution in local neighborhoods of data could be captured 

[23]. In order to discuss the value of parameter K, this paper 

selected [1,10] as the value of K. Fig. 8 shows the performance 

of KNN over different initial size of analysis window in 

dimensionality reduction methods on projected dimension 7. 

 
Fig. 8   The performance of KNN 

 over different initial size of analysis window in dimensionality 

 reduction methods on projected dimension 7. 

 

Fig. 8 shows a clear decreasing trend with the increasing 

number of K. Thus，this paper take 𝐾 = 1 as the initial size of 

analysis window of KNN. 

𝜆1 and 𝜆2 are two important parameters in the algorithm of 

RSLDA, which jointly determine the effect of dimensionality 

reduction. In order to discuss the values of parameters 𝜆1 and 

𝜆2, this paper selected [0, 0.1] as the value range of 𝜆1 and 𝜆2. 

Fig. 9 shows the relationship between diagnosis accuracy and 

two key parameters. When values of 𝜆1 and 𝜆2 are 10−5 and 

10−6, respectively, the diagnosis accuracy reaches the higher, 

which is 96.43%. 

 
Fig. 9   Relationship between accuracy and two key parameters 𝜆1，𝜆2. 
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B. Experiments on RP1043 

After the parameters are determined, according to training 

samples with/without outliers, 2 experiments were conducted 

to test the performance of algorithm adopted. Fig. 10 shows the 

confusion matrix obtained from experiments. Experiments take 

the first 70 percent of samples each class as the training 

samples. the dimension is 7 after dimensionality reduction. 

(a)                                                                                   

(b)                                                                                    
Fig. 10 Diagnosis results (confusion matrix). 

 

Fig.10 (a) shows the confusion matrix without outliers in 

training samples, the diagnosis accuracy of the normal case, the 

condenser fouling, the non-condensables, the excess oil, the 

refrigerant leak, the refrigerant overcharge, the reduced 

condenser water flow and the reduced evaporator water flow 

are 62.5%, 100%, 87.5%, 75%, 50%, 75%, 100% and 100%, 

respectively. Fig. 10 (b) shows the confusion matrix with 

outliers in training samples, the diagnosis accuracy of the 

normal case, the condenser fouling, the non-condensables, the 

excess oil, the refrigerant leak, the refrigerant overcharge, the 

reduced condenser water flow and the reduced evaporator 

water flow are 100%, 100%, 100%, 100%, 100%, 71.4%, 

100% and 100%, respectively.  

In the following experiments on RP1043, this paper 

randomly selected 30, 50 and 70 percent of samples per class 

as the training dataset and the rest are used for the testing 

dataset respectively. For fair comparison with LDA, the 

maximum dimension is (c-1) after dimensionality reduction. 

Thus the final dimension is set to 2 ~(c-1)  where c is the 

number of classes in our experiments. 

(1) Experiments on RP1043 without outliers 

This part compares RSLDA with LDA and RLDA on the 

fault dataset with 8 classification. The baseline results are 

acquired by using the 1-Nearest-Neighbor classifier on raw 

feature sets directly. This paper repeated all experiments 50 

times and adopted the mean of classification accuracy as the 

index to measure the effect of dimensionality reduction. We 

recorded their classification accuracy and learning time 

respectively in Fig.11 and TABLE Ⅲ. 

 

A
cc

u
ra

c
y
(%

)

Training samples
30%             50%               70% 30%             50%               70% 30%             50%               70%

 
Fig. 11  The classification accuracy of the adopted method 

compared with other methods on 2, 3, 4, 5, 6 and 7 dimensions 
without outliers in training samples. 

 

Fig. 11 exhibits that the performance of RSLDA and RLDA 

is almost same when training sample are 50% , 70%. But the 

performance of RSLDA are higher than other dimensionality 

reduction methods when training sample are 30%, which 

shows that the method is more suitable than other method for 

SSS problem in the paper. Table Ⅲ shows that the learning 

time is almost same on LDA, RLDA and RSLDA. 

 
TABLE Ⅲ. 

The learning time of RSLDA compared with other methods 
on 2, 3, 4, 5, 6 and 7 dimensions without outliers in training samples. 

 

 Training samples 30% 50% 70% 

Dimension method Time(s) Time(s) Time(s) 

 

2 

LDA 0.0994 0.1256 0.1034 

RLDA 0.1781 0.2347 0.2097 

RSLDA 0.1822 0.275 0.3456 

 

3 

LDA 0.1288 0.1088 0.1009 

RLDA 0.1959 0.2022 0.2009 

RSLDA 0.1172 0.2006 0.2413 

 

4 

LDA 0.1003 0.0944 0.1009 

RLDA 0.1747 0.2138 0.2053 

RSLDA 0.1066 0.0991 0.1097 

 

5 

 

LDA 0.0959 0.0969 0.1044 

RLDA 0.1825 0.2063 0.2197 

RSLDA 0.1081 0.1447 0.1641 

 

6 

LDA 0.0975 0.0941 0.105 

RLDA 0.18 0.2013 0.2209 

RSLDA 0.1209 0.155 0.2163 

 

7 

LDA 0.1072 0.0966 0.1094 

RLDA 0.1878 0.215 0.2106 

RSLDA 0.1341 0.1697 0.2238 

 

(2) Experiments on RP1043 with outliers 

This paper introduced 8 outliers into training sets of fault 

data set with 8 classification respectively and kept testing set 

unchanged. Similarly, all experiments are repeated 50 times 

and the mean of classification accuracy is adopted as the index 
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to measure the effect of dimensionality reduction. Their 

classification accuracy and learning time respectively are 

presented in Fig. 12 and TABLE Ⅳ. 

Fig. 12 exhibits that the performance of the adopted method 

is higher than other dimensionality reduction methods with 

KNN, which shows that the method is more suitable than LDA 

and RLDA for dimensionality reduction when training samples 

including outliers. TABLE Ⅳ shows the learning time is 

almost same on LDA, RLDA and RSLDA. 
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Training samples
30%             50%               70% 30%             50%               70% 30%             50%               70%

 
Fig. 12  The classification accuracy of the adopted method 

compared with other methods on 2, 3, 4, 5, 6 and 7 dimensions 

with outliers in training samples. 
 

TABLE Ⅳ. 

The learning time of RSLDA compared with other methods 
on 2, 3, 4, 5, 6 and 7 dimensions with outliers in training samples 

 
 Training samples 30% 50% 70% 

Dimension method Time(s) Time(s) Time(s) 

 

2 

LDA 0.0981 0.0972 0.1059 

RLDA 0.1666 0.1922 0.1931 

RSLDA 0.0978 0.0869 0.0916 

 

3 

LDA 0.0931 0.1066 0.1091 

RLDA 0.1872 0.1963 0.2138 

RSLDA 0.0938 0.1013 0.0959 

 

4 

LDA 0.1034 0.1025 0.0956 

RLDA 0.1781 0.2181 0.2069 

RSLDA 0.0944 0.1025 0.0953 

 

5 

 

LDA 0.0878 0.1056 0.0991 

RLDA 0.1775 0.2231 0.1888 

RSLDA 0.0959 0.1003 0.1044 

 

6 

LDA 0.0994 0.1094 0.1097 

RLDA 0.1706 0.0959 0.2306 

RSLDA 0.0969 0.1975 0.1163 

 

 7 

LDA 0.1006 0.1566 0.0953 

RLDA 0.1753 0.2481 0.2081 

RSLDA 0.1016 0.12 0.1281 

 

VI. CONCLUSIONS 

In this paper, a novel efficient and robust feature selection 

algorithm called RSLDA, is applied to dimensionality 

reduction of fault data. Inspired by previous works, 𝐿2 norm is 

replaced by 𝐿2,1  norm in this algorithm to extract the most 

discriminant features adaptively; and an orthogonal matrix and 

a sparse matrix are introduced to ensure the extracted features 

contain the master information of the original data. 

Experimental results have demonstrated that the method can 

greatly improve the performance of fault classification when 

fault data set with or without outliers. In addition, this paper 

also proved that RSLDA is more suitable for SSS problem in 

fault classification. 
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