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Abstract—We propose a deep learning-based frame rate up-
conversion algorithm using bilateral motion estimation. We first
estimate bilateral motion fields by employing a convolutional
neural network. Also, we approximate intermediate bi-directional
motion fields, assuming linear motions between successive frames.
Finally, we develop the synthesis network to produce an in-
termediate frame by merging the warped frames, which are
obtained using the two kinds of motion fields. Experimental
results demonstrate that the proposed algorithm generates high-
quality intermediate frames on challenging sequences with large
motions and occlusion, and outperforms state-of-the-art conven-
tional algorithms.

I. INTRODUCTION

The frame rate is an important factor affecting the quality of
a video, since a low frame rate causes motion aliasing, yields
abrupt motion artifacts, and degrades the video quality. To
improve the quality of such low frame rate videos, frame rate
up-conversion (FRUC) is used to increase temporal resolutions
by generating intermediate frames between two frames. FRUC
is widely used in practical applications, including visual qual-
ity enhancement, video compression, and slow-motion video
generation. Due to its practical importance, a lot of researches
have been made to develop effective FRUC techniques that
provide smooth temporal transitions [1]–[6].

Conventional FRUC algorithms exploit the motion informa-
tion in videos to interpolate intermediate frames. Specifically, a
typical FRUC algorithm estimates pixel-wise correspondences
between adjacent frames and then interpolates an intermediate
frame based on the correspondences [1]–[3]. Since the ac-
curacy of the correspondence matching has great impacts on
the quality of the interpolated frame, most FRUC algorithms
have focused on the development of accurate correspondence
matching [4]–[6]. In addition, attempts have been made to
compensate for inaccurate motion information. For example,
in [1], [7], holes in warped frames, which are caused by imper-
fect correspondence matching, are filled in to yield interpolated
frames. However, these conventional algorithms may fail to
provide high-quality intermediate frames for videos with large
motions, since their interpolation performance heavily depends
on the correspondence matching techniques.

Recently, inspired by the success of deep learning in various
computer vision and image processing tasks, many CNN-based
FRUC techniques have been developed [2], [3], [8]–[10]. Long
et al. [8] developed a convolutional neural network (CNN)

that takes two consecutive frames as input and synthesizes
an intermediate frame without requiring explicit motion esti-
mation. Their network attempts to perform motion estimation
and frame interpolation simultaneously, but sometimes yields
visual artifacts and blurry results. To address this issue,
Niklaus et al. [3], [9] designed a CNN that outputs pixel-wise
convolution kernels instead of an interpolated frame. Then, an
intermediate frame is synthesized by convolving the kernels
with two input frames. Similarly, Liu et al. [2] developed a
CNN that estimates a spatiotemporal optical flow field, called
voxel flow, between two frames. However, the Niklaus et al.’s
and Liu et al.’s networks [2], [3], [9] may fail to provide high-
quality results if input frames have large motions, since they do
not exploit contextual information in the frames. Thus, in [10],
estimated motion information and contextual information of
input frames are fed into a CNN to interpolate an intermediate
frame. However, the performance of their algorithm is greatly
affected by the accuracy of the motion estimation scheme.

In this work, to address the aforementioned limitations
of the conventional CNN-based techniques, we propose a
novel FRUC algorithm. First, we develop two complementary
motion estimation schemes: bilateral motion estimation and
intermediate flow approximation. Then, we design a synthe-
sis network that fuses the intermediate frames, obtained by
employing the two complementary motion information, to
generate a final interpolated frame. Experimental results show
that the proposed algorithm provides better FRUC results than
the existing state-of-the-art algorithms in [9], [11], [12].

The reminder of this paper is organized as follows: Sec-
tion II describes the proposed FRUC algorithm, and Section III
discusses experimental results. Finally, Section IV concludes
this paper.

II. PROPOSED ALGORITHM

Fig. 1 is an overview of the proposed algorithm that takes
two successive frames I0 and I1 as input and synthesizes
the middle frame I0.5 as output. First, we estimate bilateral
motions between the input frames. Second, we estimate optical
flows between I0 and I1 and then approximate intermediate
bi-directional flows. Third, pixel-wise context maps C0 and
C1 are extracted from I0 and I1, respectively. Then, the input
frames and the corresponding context maps are warped using
the bilateral motions and the approximate flows. Finally, the
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Fig. 1. An overview of the proposed FRUC algorithm. Two motion fields FB
0.5→0 and FB

0.5→1 are estimated by the bilateral motion estimation, and four
motion fields FA

0.5→0, GA
0.5→0, FA

0.5→1, and GA
0.5→1 are estimated by the flow approximation. Pixel-wise context maps C0 and C1 are extracted from the

input frames. Each motion field is used to generate a warped frame and the corresponding context map. A stack of the six pairs of a warped frame and its
context map are fed into the synthesis network to yield the intermediate frame I0.5.

Fig. 2. Bilateral motion estimation: xb and xf are pixel locations in the
previous frame I0 and the following frame I1, respectively, which correspond
to x in the intermediate frame I0.5.

synthesis network takes the warped frames and their context
maps to generate the final intermediate frame I0.5.

A. Bilateral Motion Estimation

Given two consecutive frames I0 and I1, the objective is to
predict the intermediate frame I0.5 using motion information.
However, because of the lack of the intermediate frame, it
is impossible to directly estimate the motion information
between the intermediate frame and one of the input frames.
To address this issue, we assume linear motion between
successive frames. More specifically, let x denote a pixel
location in the intermediate frame I0.5, and F0.5→0(x) and
F0.5→1(x) be the backward and forward motion vectors at x,
respectively. Then, based on the linear assumption, we have
F0.5→0(x) = −1× F0.5→1(x). Fig. 2 illustrates this bilateral
motion estimation.

We develop a CNN to estimate bilateral motion fields
F0.5→0 and F0.5→1 using the previous and following frames
I0 and I1. To this end, we adopt PWC-Net [13], a CNN-
based optical flow algorithm, as a basis network and modify
it accordingly for the bilateral motion estimation. Fig. 3
summarizes key components of the modified PWC-Net. The
original PWC-Net regards I0 and I1 as reference and target
frames, respectively. On the other hand, the bilateral motion
estimation regards the intermediate frame I0.5 as reference,
and I0 or I1 as target. Thus, whereas the original PWC-
Net warps the feature cl1 of I1 toward the feature cl0 of I0,
we warp both features cl0 and cl1 toward the intermediate
frame, yielding cl0→0.5 and cl1→0.5, respectively. Moreover, we
compute matching costs between cl0→0.5 and cl1→0.5 in the cost
volume layer. Also, we use cl0→0.5 and cl1→0.5 as input to the
optical flow estimator.

B. Intermediate Flow Approximation

Although the bilateral motion estimation effectively finds
motion fields F0.5→0 and F0.5→1 from the intermediate frame
to the previous and following frames, it may fail to estimate
accurate motions especially at regions with large motions or
occlusion. For example, Figs. 4 (b) and (c) are interpolated
regions, reconstructed using bilateral motion fields. Many
visual artifacts and blurry effects are observed. To improve the
quality of an interpolated frame, in addition to the bilateral
motion estimation, we propose an approximation technique
to estimate the intermediate bi-directional flows F0.5→1 and
F0.5→0 using optical flow fields F0→1 and F1→0 between the
two input frames. We use PWC-Net to estimate F0→1 and
F1→0, which is shown in Fig. 1 as the flow extractor.
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Fig. 3. The architecture of the bilateral motion extractor in Fig. 1, which is based on PWC-Net [13]. The feature maps of the previous and following frames
I0 and I1 at the lth level, denoted by cl0 and cl1, and the up-sampled motion fields F l−1

0.5→0 and F l−1
0.0→1 estimated at the (l − 1)th level are fed into the

CNN to generate the motion fields F l
0.5→0 and F l

0.5→1 at the lth level.

(a) (b) (c) (d) (e)

Fig. 4. Comparison of interpolation results obtained by the complementary motion estimation schemes: (a) a ground-truth intermediate frame and (b)∼(e)
enlarged parts for the blue and yellow rectangles in (a). The subimages in (b) and (c) are interpolated using the bilateral motion estimation, and (d) and (e)
using the intermediate flow approximation. The green rectangles in (b) and (e) contain severe artifacts caused by motion inaccuracies.

(a) (b) (c)

Fig. 5. Illustration of the intermediate flow approximation: F0.5→1 is approx-
imated by halving F0→1, and G0.5→0 is obtained by reversing F0.5→1.

Fig. 5 illustrates the intermediate flow approximation, in
which each column represents a frame at a time instance and
a dot corresponds to a pixel in the frame. Given an optical
flow field F0→1 in Fig. 5(a), we first approximate F0.5→1 in
Fig. 5(b). For pixel x at t = 0.5, depicted by a green dot, an
intermediate flow F0.5→1(x) is approximated by halving the
flow at the same location at t = 0, depicted by the red line,
assuming that the optical flow is locally smooth. Since the
time interval from I0.5 to I1 is half of that between I0 and I1,
we halve the flows from I0 to I1. Similarly, we approximate
F0.5→0(x) from F1→0(x). More specifically, we compute the

approximate flows as

F0.5→1(x) =
1

2
× F0→1(x), (1)

F0.5→0(x) =
1

2
× F1→0(x). (2)

We assume that the motion trajectory between two consec-
utive frames is linear. Then, the approximate flows in (1) and
(2) should be symmetric with respect to x at t = 0.5. Thus, we
obtain additional intermediate flows by reversing the directions
of the flows in (1) and (2),

G0.5→0(x) = (−1)× F0.5→1(x), (3)
G0.5→1(x) = (−1)× F0.5→0(x). (4)

Fig. 5(c) illustrates an approximate flow G0.5→0 in (3), which
is obtained by reversing F0.5→1 in Fig. 5(b).

C. Synthesis Network

If we use only input frames directly to interpolate interme-
diate frames based on the motion information, rich contextual
information in the input frames may be lost during the inter-
polation [10], [12], [14], degrading the FRUC performance.
Therefore, we further exploit contextual information in the
input frames, called context maps. Specifically, as done in [10],
we extract the output of the conv1 layer of ResNet-18 [15] as
a context map. This process is done by the context extractor
in Fig. 1.
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To synthesize the intermediate frame, we employ the back-
ward warping operation [13], [16]–[18], which warps a target
frame Itarget into a reference frame Iref using a motion vector
field by

Iwref(x) = Itarget(x+ Fref→target(x)) (5)

where Fref→target is the motion vector field from the reference
to the target. Since the estimated motion field contains errors in
practice, the warped frame Iwref is not identical to the reference
frame, but can be regarded as a candidate for its approxi-
mation. By warping two input frames and the corresponding
context maps, we obtain six pairs of a warped frame and its
context map: two pairs are reconstructed using the bilateral
motion estimation, and four pairs using the intermediate flow
approximation. Since these six warped pairs have different
characteristics, they are used as complementary candidates of
the intermediate frame to improve the interpolation perfor-
mance. Fig. 1 shows these six pairs.

We develop the synthesis neural network that takes the
aforementioned six pairs of candidates as input and outputs an
interpolated frame I0.5, as similarly done in [10]. Specifically,
we employ the residual dense network (RDN) [19] to exploit
hierarchical features of the candidates. In this work, the
upscaling layer in the original RDN is removed, because the
synthesis network should preserve the spatial resolution of the
input. The number D of residual dense blocks (RDBs), the
number C of convolution layers per RDB, and the growth
rate G are set to 20, 6, and 32, respectively. Note that these
parameters are smaller than the empirically found optimal
values in [19]. This is because the warped frames fed into the
synthesis network are already motion-compensated and thus
the network requires a smaller receptive field.

D. Training

We have two networks in the proposed algorithm: the
bilateral motion extractor and the synthesis network. To train
the bilateral motion network, we use the Adam optimizer [20]
with an input patch size of 384×320 and a mini-batch size of 6
samples. We start with a learning rate η = 0.0001 and shrink it
via η ← 0.1η at 100,000 and 150,000 iterations. We compute
the warping loss lw as the L1 loss between a ground-truth
frame and a warped frame using the bilateral motion, given
by

lw = ‖I0.5 − Iw0→0.5‖1 + ‖I0.5 − Iw1→0.5‖1. (6)

We also compute the smoothness loss [2] to constrain neigh-
boring pixels to have similar flow vectors, given by

ls = ‖∇F0.5→0‖1 + ‖∇F0.5→1‖1. (7)

Then, the bilateral loss is defined as the weighted sum

lb = λwlw + λsls (8)

where λw = 0.4 and λs = 1. We perform data augmentation
to increase the size of training data as in [11]; we use random
cropping and random flipping horizontally and vertically.

To train the synthesis network, we use the Adam optimizer
with a patch size of 256×256 and a mini-batch size of 8
samples. We fix the learning rate η to 0.0005. We define the
reconstruction loss as the L1 norm between a ground-truth
frame I0.5 and a synthesized frame Î0.5 as

lr = ‖Î0.5 − I0.5‖1. (9)

We also compute the perceptual loss [21] based on the
difference of features as

lp = ‖φ(Î0.5)− φ(I0.5)‖2 (10)

where φ is a function to extract the conv4 3 feature of
VGG16 [22]. Then, the synthesis loss is defined as the
weighted sum

ls = λrlr + λplp (11)

where λr = 0.8 and λp = 0.005. For data augmentation, we
use random cropping. Note that, when we train the synthesis
network, the pre-trained bilateral motion network is used after
fixing its parameters.

III. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed FRUC algo-
rithm on nine test sequences, which have a spatial resolution
of 1920×1080 and a temporal resolution of 24 frames per
second (fps). All test sequences are challenging and have
large motions. We compare the performance of the proposed
algorithm with those of SepConv [9], SuperSlomo [11], and
CyclicGen [12]. Odd frames in the test sequences are skipped
and then interpolated.

A. Datasets

We train the bilateral motion network using the Adobe240-
fps dataset [23]. We compose 13 frames as one sequence
sample. Then, among the 13 frames in a sequence sample,
three frames with identical frame intervals are randomly
chosen, such as (2nd, 4th, 6th) or (3rd, 7th, 11th). The frame
intervals are also randomly chosen from 1 to 4. Since only
three consecutive frames compose one sample in conventional
FRUC datasets, temporal information, which can be obtained
from a video sequence (more than 3 frames), cannot be effec-
tively exploited. In contrast, using sequence samples helps the
proposed network to learn temporal information among frames
in a sequence. We finally obtain 6,000 sequence samples that
have a spatial resolution of 640×360 pixels.

To train the synthesis network, we collect triplets, each of
which consists of three consecutive frames from 720p high-
quality YouTube videos. As in [9], [10], we select samples
with large motions and sufficient texture. Specifically, the
average value of estimated flow vectors between previous and
following frames should be larger than 4 pixels. We finally
obtain 135,000 samples.
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(a) Ground truth (b) SepConv [9] (c) SuperSlomo [11] (d) CyclicGen [12] (e) Proposed

Fig. 6. Difference maps for interpolated frames (top, third, and fifth rows) or enlarged interpolated regions for the red rectangles (second, fourth, and sixth
rows) in the ground-truth in (a) are shown. They are obtained by (b) SepConv [9], (c) SuperSlomo [11], (d) CyclicGen [12], and (e) the proposed algorithm.

B. Comparison with State-of-the-Art Algorithms

We assess the proposed algorithm in comparison with the
conventional algorithms. Fig. 6 compares interpolation re-
sults. A difference map between ground-truth and interpolated
frames is shown to visualize the quality of the interpolation
frame. White pixels indicate large differences between corre-
sponding pixels, whereas black pixels mean negligible differ-
ences. The conventional algorithms fail to preserve complex
texture. For example, the details of the wall are blurred in
Figs. 6(b)∼(d). Also, SepConv [9] and CyclicGen [12] in
Figs. 6(b) and (d), respectively, cannot faithfully reconstruct
the text “SUNTRUST” on the building facade. In Fig. 6(c),
SuperSlomo [11] provides better results. However, the pro-
posed algorithm outperforms all these conventional algorithms
and preserves the texture information more faithfully. This is
because the proposed algorithm synthesizes an intermediate
frame by merging complementary candidate frames with con-
text maps, obtained by the bilateral motion estimation and the
intermediate flow approximation.

Next, we compare interpolation results objectively. Table I
lists the average PSNR results over all interpolated frames in
each test sequence. The proposed algorithm is implemented

in two ways: using only the intermediate flow approximation
(FA) and using both the intermediate flow approximation and
the bilateral motion estimation (FA+BM). Even FA outper-
forms all the conventional algorithms. By adding the bilateral
motion estimation, the proposed algorithm further improves
the interpolation performance by 0.28 dB. Especially, FA+BM
significantly improves the interpolation performance on the
sequences #8 and #9, which have large camera motions and
complex texture, by 3.01 dB and 4.05 dB, respectively. This
confirms that the proposed algorithm can synthesize high-
quality intermediate frames effectively using complementary
motion information.

IV. CONCLUSIONS

We proposed a new FRUC algorithm to handle large mo-
tions. We employed two complementary motion estimation
schemes: the bilateral motion estimation and the intermediate
flow approximation. The bilateral motion estimation is more
reliable, while the flow approximation can predict the motion
information more accurately in case of large motions. Then,
we proposed the synthesis network to fuse the two com-
plementary motion information and generate an intermediate
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TABLE I
PSNR COMPARISON OF SEPCONV [9], SUPERSLOMO [11], CYCLICGEN [12], AND THE PROPOSED ALGORITHM. FOR EACH SEQUENCE, THE BEST AND

THE SECOND BEST RESULTS ARE BOLDFACED AND UNDERLINED, RESPECTIVELY.

#1 #2 #3 #4 #5 #6 #7 #8 #9 Avg.

SepConv [9] 22.39 17.66 34.69 27.37 28.09 30.33 34.43 32.12 25.52 28.78
SuperSlomo [11] 24.14 18.92 32.90 27.91 28.94 30.55 36.06 31.43 24.07 28.85
CyclicGen [12] 17.73 17.36 32.76 24.41 23.74 27.24 28.48 29.31 24.37 25.96

Proposed (FA) 25.57 24.46 28.14 28.71 33.28 30.66 37.70 30.17 21.30 29.30
Proposed (FA+BM) 26.74 24.65 28.98 27.53 32.38 30.48 36.92 33.18 25.35 29.58

frame. Experiments demonstrated that the proposed algorithm
outperforms the state-of-the-art algorithms on challenging
sequences with large motions.

ACKNOWLEDGMENT

This work was supported partly by the Cross-Ministry Giga
KOREA Project Grant funded by the Korean Government
(MSIT) (development of 4D reconstruction and dynamic de-
formable action model based hyper-realistic service technol-
ogy) under Grant GK18P0200, partly by the National Research
Foundation of Korea Grant funded by the Korean Government
(MSIP) under Grant NRF-2018R1A2B3003896 and Grant
NRF-2019R1A2C4069806.

REFERENCES

[1] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski,
“A database and evaluation methodology for optical flow,” Int. J.
Comput. Vis., vol. 92, no. 1, pp. 1–31, Mar. 2011.

[2] Z. Liu, R. A. Yeh, X. Tang, Y. Liu, and A. Agarwala, “Video frame
synthesis using deep voxel flow,” in Proc. IEEE Int. Conf. Comput. Vis.,
Oct. 2017, pp. 4463–4471.

[3] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
convolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul.
2017, pp. 670–679.

[4] E. Herbst, S. Seitz, and S. Baker, “Occlusion reasoning for temporal
interpolation using optical flow,” University of Washington, Seattle,
Tech. Rep. UW-CSE-09-08-01, Aug. 2009.

[5] L. L. Rakêt, L. Roholm, A. Bruhn, and J. Weickert, “Motion compen-
sated frame interpolation with a symmetric optical flow constraint,” in
Int. Symp. Vis. Comput., Jul. 2012, pp. 447–457.

[6] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros, “View synthesis
by appearance flow,” in Proc. European Conf. Comput. Vis., Oct. 2016,
pp. 268–301.

[7] D. Mahajan, F.-C. Huang, W. Matusik, R. Ramamoorthi, and P. Bel-
humeur, “Moving gradients: A path-based method for plausible image
interpolation,” ACM Trans. Graphics, vol. 28, no. 3, pp. 42:1–42:11,
Aug. 2009.

[8] G. Long, L. Kneip, J. M. Alvarez, H. Li, X. Zhang, and Q. Yu, “Learning
image matching by simply watching video,” in Proc. European Conf.
Comput. Vis., Oct. 2016, pp. 434–450.

[9] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via adaptive
separable convolution,” in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017,
pp. 261–270.

[10] S. Niklaus and F. Liu, “Context-aware synthesis for video frame interpo-
lation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 1701–1710.

[11] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller, and
J. Kautz, “Super SloMo: High quality estimation of multiple interme-
diate frames for video interpolation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 9000–9008.

[12] Y.-L. Liu, Y.-T. Liao, Y.-Y. Lin, and Y.-Y. Chuang, “Deep video frame
interpolation using cyclic frame generation,” in AAAI Conf. Artificial
Intell., Jan. 2019.

[13] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “PWC-Net: CNNs for optical
flow using pyramid, warping, and cost volume,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8934–8943.

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Medical
Image Comput. Comput.-Assisted Intervention, Oct. 2015, pp. 234–241.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
2016, pp. 770–778.

[16] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. Van Der Smagt, D. Cremers, and T. Brox, “FlowNet: Learning optical
flow with convolutional networks,” in Proc. IEEE Int. Conf. Comput.
Vis., Dec. 2015, pp. 2758–2766.

[17] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jul. 2017, pp. 4161–4170.

[18] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of
101 human actions classes from videos in the wild,” arXiv preprint
arXiv:1212.0402, 2012.

[19] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense
network for image super-resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 2472–2481.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learning Representations, May 2015.

[21] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proc. European Conf. Comput.
Vis. Springer, Oct. 2016, pp. 694–711.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learning Represen-
tations, May 2015.

[23] S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and O. Wang,
“Deep video deblurring for hand-held cameras,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jul. 2017, pp. 1279–1288.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1975




