
Structure Growth for Small-Footprint Speech
Recognition

Jiayao Wu†‡, Zhiyuan Tang† and Dong Wang†∗
† Center for Speech and Language Technologies, Tsinghua University, Beijing, China

‡ School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
Corresponding email: wangdong99@mails.tsinghua.edu.cn

Abstract—Modern speech recognition (ASR) is based on large-
scale deep neural nets (DNNs) with various architectures. For
small-footprint applications running on low-power chips, how-
ever, the size of the DNNs must be extremely constrained. In
this case, training a generalizable acoustic model is not feasible,
especially when the acoustic conditions are diverse.

Most of existing approaches to small-footprint networks start
from a large net and reduce its scale by pruning. In this paper,
we investigate a reverse idea: starting from a small net and
increasing it gradually. This structure-growth approach follows
a ‘general to specific’ principle and grows the net gradually.
We start from the AdaBoost algorithm that builds specific nets
for error-prone data, and then propose a new ConBoost that
builds specific nets for specific conditions. Our experiments on a
small-footprint ASR task demonstrated that both AdaBoost and
ConBoost outperform the baseline and other comparative meth-
ods including bagging and double-net retraining. Furthermore,
ConBoost performs better than AdaBoost.

I. INTRODUCTION

Automatic speech recognition (ASR) has achieved signif-
icant performance in recent years, mostly attributed to the
emerging of large data sets and the models that can consume
this large data – the deep neural nets (DNNs) [1]. With a
large and deep neural net, it is possible to learn the complex
patterns of speech signals in multiple conditions, hence very
promising performance [2]. Recently, end-to-end system that
involves both acoustic and language models in a unified DNN
architecture has been proposed [3].

In spite of the great progress in DNN-based architecture,
most of existing techniques require a large network, which
is not suitable for small-footprint applications running on
resource-limited devices, e.g., chips. On these devices, only a
very limited memory and computational power are available.
For example, the MVSILICON 8224 that we used in this
experiment offers only 100k SDRAM and the MCU is only
240 MHz. With these stringent limitations, it is impossible to
use large-scale networks and so the benefit of DNNs is not
easy to harvest.

Various approaches have been proposed to improve the
performance of DNNs with limited-resource devices. For
example, factorization methods by SVD [4], tensor training
decomposition [5], or structured matrix [6]. These methods,
however, cannot obtain high compression rate and limited

This work was supported by the National Natural Science Foundation of
China No. 61633013.

performance loss simultaneously. Structure pruning methods
were also proposed [7], [8], but sparse matrix multiplication
is slow without hardware support. Another approach is dark
knowledge transfer [9], [10], where a large net is trained firstly,
and then a small net is trained by transferring the knowledge
from the large net. This approach requires sufficient data to
train the large net, hence not suitable for cases where the
training data is limited as well.

All the above methods start from a large-scale network. In
this paper, we present an opposite approach that starts from a
small net that describes the general data and then grow the net
incrementally by considering more difficult data. This novel
structure-growth approach follows the general to specific
principle of problem solving, and so it is suitable to solve
special data that are usually difficult to solve by the general
model. Moreover, this structure-growth approach can increase
the model capacity gradually when new data is available, hence
offering a way of life-long learning. Finally, this approach
produces modular networks, by which a particular task can be
easily addressed by net composition. Note that the structure-
growth approach is orthogonal to the traditional methods such
as pruning and dark-knowledge transfer, and their combination
shall lead to further improvement.

In this study, we start from the AdaBoost algorithm [11] that
builds a general model first using the whole training data and
then builds specific models for error-prone data. Moreover, we
propose a new ConBoost that divides the training data into
different conditions and builds specific models for specific
conditions. As a preliminary study, we consider only two
conditions: clean and noisy recordings. Our experiments on
a small-footprint ASR task demonstrated that both AdaBoost
and ConBoost outperform the baseline and other comparative
methods including bagging and double-net retraining. Further-
more, ConBoost performs better than AdaBoost.

II. RELATED WORK

The structure-growth approach is related to bagging [12],
[13]. In bagging, each basic classifier is trained by a subset
randomly selected from the training data, and the main goal
is to reduce the variance of the model. The structure-growth
approach (AdaBoost and ConBoost) follows a very different
philosophy: it tries to solve the general problem, and then pays
more attention to special (and usually more difficult) problems.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

461978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019

The structure-growth idea was also explored by Xu et
al. [14] and Moriya et al. [15] in the name of progressive
learning. However, their focus is to learn new conditions with
the help of old conditions, rather than a model that works
better on both new and old conditions.

III. METHODS

In this section, we first describe the two structure-growth
approaches: AdaBoost and ConBoost, and then describe two
methods to combine the general and specific models in Con-
Boost: score fusion and log-linear combination.

A. AdaBoost

AdaBoost is a very popular structure-growth approach [11].
The main idea of AdaBoost is to build a sequence of basic
models where each new model is trained on data that tends
to be mis-classified by the previous classifiers. These basic
models are finally combined with appropriate weights that are
derived from the performance of each individual model. The
combination is simply voting with non-probabilistic models
(e.g., decision tree, SVM), but can be also a score fusion
method if the basic models are probabilistic.

Although most AdaBoost implementations use decision
trees as the basic classifier [16], Schwenk et al. [17] demon-
strated that it also applies to shallow MLPs. However, applying
AdaBoost to DNNs seems not successful yet, especially in
speech recognition. A possible reason is that DNNs are very
powerful classifiers so the weak classifier assumption pre-
sumed by AdaBoost is not well suited. In this study, due to the
limited resource in our targeted small-footprint applications,
the DNN models are not so strong and so AdaBoost could be
helpful.

However, applying AdaBoost to speech recognition is not
performable. Note that DNN1 is trained with samples at the
frame level, so AdaBoost-compliant data weighting should be
on frames too. However, the frame-level weighting incurs high
computation, and more importantly, it is inconsistent with the
evaluation metric of the ASR task, i.e., word error rate (WER).
We therefore choose a modified version of Adaboost that treats
each sentence as a training sample and weights every sentence
according to its WER or averaged frame accuracy (FA). More
specifically, we firstly train a general DNN using the whole
training data, and then transcribe the training data using the
general DNN and a language model (LM). For each sentence,
the WER and FA are calculated and based on which the
sentence is weighted. Finally, the weighted data is used to
train the specific model.

In fact, this approach has deviated from the generic Ad-
aBoost, and so it can be called pseudo AdaBoost. The devia-
tion is from three aspects: (1) the sentence-level weighting
is inconsistent with the frame-level DNN training; (2) the
objective function for DNN training, i.e., cross entropy (CE) is
inconsistent with the pseudo loss required by AdaBoost [17];
(3) the sentence-level WER and FA are dependent on the

1For simplicity, we used the simple feed-forward architecture

LM used for transcribing the training data, so the error-prone
sentences selected according to these criteria may be not hard
for the DNN, but for the LM.

Since pseudo AdaBoost deviates from true AdaBoost, the
weights for the general and the specific models computed
according to the AdaBoost algorithm are not optimal anymore.
We therefore choose a more empirical solution that uses a
development set to determine the weights.

B. ConBoost

AdaBoost follows the general to specific principle, where
the specific data are those that are hard to recognize by the
general model. In another way, we can define specific data as
with a particular condition. This condition can be any property
of the data, e.g., noisy background, reverberated channel, a
particular accent, a particular gender. For each condition, the
data exhibits a particular property and so is ideally modeled
by a specific DNN. These specific DNNs can be integrated
with the general DNN as in the AdaBoost algorithm, leading
to a novel boosting algorithm that we call condition Boosting,
or ConBoost in short.

In this paper, we treat noisy data as specific and use them
to train a specific DNN. More specifically, we start from a
clean data set (WSJ) and augment half of the data with a
particular type of noise at a particular SNR level. All the noise-
augmented data are treated as specific to train the specific
DNN, and all existed data to train the general DNN. Fig. 2
(b) illustrates the ConBoost approach.

Note that ConBoost is a general algorithm and can deal
with multiple conditions, i.e., train multiple specific DNNs.
However, in this study we target for concept proof and so
focus on the simplest single specific condition case.

C. Model integration

Once we have trained the general model and specific model,
we need to combine them appropriately. A simple way is to
average their output, which is the posterior of senones in our
experiment, i.e.,

p(q|xt) = αpG(q|xt) + (1− α)pS(q|xt),

where q denotes senones, xt the frame segment centered at
time t. The factor α is introduced to balance pG and pS ,
which denote the output of the general model and the specific
model respectively. In practice, a dev set was used to optimize
the value of α. This score fusion approach is shown in Fig. 1.

Another more sophisticated approach is to combine the logit
output (output of the last hidden layer before the softmax), and
then retrain the final layer. This is shown in the bottom picture
of Fig. 1 and formulated as follows:

p(q|xt) = σ(W

[
FG(xt)
FS(xt)

]
),

where σ is the softmax function, FG and FS are the output
of the penultimate layer of the general and specific DNNs,
respectively. W denotes the last hidden layer and is trainable.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

462

This equals to concatenating the features output from the
two DNNs and then training a log-linear model to perform
the classification. In our experiments, the log-linear model is
trained using the entire training data.

Fig. 1. Top: score fusion; Bottom: log-linear combination.

D. Comparison with other methods

It is interesting to compare AdaBoost and ConBoost with
several related methods, including random bagging, condition-
al bagging, and double net. The five approaches are illustrated
in Fig. 2.

• Random bagging. Both AdaBoost and ConBoost belong
to the ensemble approach that constructs multiple experts
to make group decisions. Random bagging is another
ensemble approach, where each expert is trained with a
subset of data independently sampled from the original
training data. Boosting and bagging follow different prin-
ciples. Random bagging aims to reduce the variance of
DNN models caused by the randomness of both the initial
parameters and the training data. It therefore targets for
reducing the generalization error, i.e., error on test data.
The boosting approach, in contrast, follows the general to
specific principle and aims to improve the representation
capability of the model [18].

• Conditional bagging. Conditional bagging is another
bagging approach, which trains models for individual
conditions and then bags them together. This is similar
to random bagging in which all the expert models are
independent, but the models in conditional bagging are

trained on data of specific conditions, not via random
sampling as in random bagging.

• Double Net. The final architecture we need to compare is
a double-net architecture, where the network is the same
as the general model except that the number of units per
layer is doubled. This means that the total number of
parameters is the same as in AdaBoost, ConBoost and
bagging. Therefore, the comparison between them will
shed light on the true contribution of the boosting and
the bagging approaches.

G SG S

G G

G

(a) (b)

(c)

(e)

S S

(d)

Fig. 2. Architecture of (a) AdaBoost; (b) ConBoost; (c) Random bagging; (d)
Conditional bagging; (e) Double net. The blue oval denotes the entire training
data; the pink oval is a subset of the data with a particular condition; the red
circles denote hard data for the general DNN.

IV. EXPERIMENTS

A. Database and configurations

The experiments were conducted with the Wall Street Jour-
nal (WSJ) Corpus [19]. We randomly selected 3500 utterances
from 83 different speakers in SI-84, about 7 hours in total.
And half of the data was augmented by adding noise signals
sampled from the MUSAN dataset. The dev93 dataset was
used for development and the eval92 dataset was used for

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

463

evaluation. They were augmented by noisy data in the same
way as the training set.

The ASR system was based on the HMM-DNN hybrid
architecture [20], where the DNN plays the role of acoustic
model that maps acoustic features to posterior probabilities
of senones, i.e., pdfs that correspond to the clustered states
of the HMMs. We used the kaldi [21] toolkit to perform
the experiments. The training and inference follow the wsj
s5 nnet3 chain recipe [22]. The input feature involves 40-
dimensional Fbanks, and the DNN contains 3 hidden layers
that involve 64,64,512 nodes, respectively. This small size
ensures the net is computable in a low-power chip. We choose
the chain model because this model is less impacted by the
prior of the pdfs, which helps the experiment as prior may
change when we sample data from the training set. The
language model is the tgpr model of the wsj recipe, which
involves 3-grams of 123k words.

B. Performance

The performance in terms of WER of various training
methods and model structures are reported in Table I. The
systems are:

• Baseline: DNN baseline trained with clean + noisy data.
• Random Bag. : Random bagging approach, where the

expert DNNs are trained by dataset independently sam-
pled from the clean + noisy data. These two DNNs are
combined by score fusion.

• Conditional Bag. : Condition bagging approach, where
one expert DNN is trained by the clean data, and the other
expert DNN is trained by the noisy data. These DNNs are
combined by score fusion.

• Double Net: DNN trained using clean + noisy data, but
the model size is doubled.

• AdaBoost (WER): AdaBoost method with clean + noisy
data to train the general DNN and the sentences weighted
according to WER are used to train the specific DNN.
These two DNNs are combined by score fusion. The tgpr
LM is used to evaluate the weight of each sentence and
perform decoding on the training data.

• AdaBoost (FA): AdaBoost method with clean + noisy
data to train the general DNN and the sentences weighted
according to average frame accuracy are used to train the
specific DNN. These two DNNs are combined by score
fusion. The tgpr LM is used to evaluate the weight of
each sentence and perform decoding on the training data.

• ConBoost (Fusion): Conditional structure growth, and
the general and specific DNNs are combined by score
fusion.

• ConBoost (Log-linear): Conditional structure growth,
and the general and specific DNNs are combined by log-
linear model.

In Table I, it can be seen that almost all the ensemble meth-
ods (boosting and bagging) can achieve performance gains
than the baseline, except the conditional bagging. However,
since all the ensemble methods leverage double-sized param-
eters, in order to discover the true value of these methods,

TABLE I
PERFORMANCE OF VARIOUS SYSTEMS IN WER.

WER%
Dev. Eva.

Baseline 29.69 19.10
Double Net 28.13 18.55
Random Bag. 28.89 18.11
Conditional Bag. 33.01 22.47
AdaBoost (WER) 29.35 18.66
AdaBoost (FA) 28.48 18.13
ConBoost (Fusion) 28.72 18.55
ConBoost (Log-Linear) 26.67 17.54

we should compare them with the double-net performance
(18.55%). This comparison reveals three effective methods:
Random bagging (18.11%), AdaBoost (FA) (18.13%) and
ConBoost (Log-Linear) (17.54%). These results demonstrat-
ed that both the variance-reduction principle (in Random
Bagging) and the general-to-specific principle (AdaBoost and
ConBoost) work in small-footprint scenarios. The superior
performance of ConBoost plus log-linear combination is in-
teresting. On one hand, it demonstrates that training specific
models for specific conditions is reasonable, and on the other
hand, it indicates that the value of this conditional training is
more effective on the feature level, so the classifier needs to
be retrained.

The bad performance of conditional bagging indicates that
the idea of training conditional dependent DNNs and then
bagging them together does not work. This is understandable
as this approach does not learn any common patterns in the
clean and noisy data, so the combination simply averages the
performance of all the models on each test sentence.

V. CONCLUSIONS

We studied two structure growth algorithms, AdaBoost and
ConBoost, to deal with multi-conditional data with a small
net. These two algorithms follow the same general-to-specific
principle that grows the net gradually. This growth is on
demand, which makes controlling the net volume easier. Our
experiments on a small-footprint ASR task shows that both
AdaBoost and ConBoost outperformed the baseline model, as
well as a double-sized model. Comparing these two algorithm-
s, ConBoost is more superior. These results indicate that the
general-to-specific principle works for DNN-based ASR, and
dividing the training data into different conditions and training
specific models for difficult conditions improves the overall
performance. Since the model is grown incrementally, we hope
the structure growth idea may inspire a new way of life-long
learning.

The future work will investigate combining specific DNNs
of more conditions, e.g., different genders and different chan-
nels. Another work will investigate other suitable ways for
DNN combination.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

464

REFERENCES

[1] Dong Yu and Li Deng, AUTOMATIC SPEECH RECOGNITION.,
Springer, 2016.

[2] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, “Deep learning,”
nature, vol. 521, no. 7553, pp. 436, 2015.

[3] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmid-
huber, “Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks,” in Proceedings of the
23rd international conference on Machine learning. ACM, 2006, pp.
369–376.

[4] Dan Kalman, “A singularly valuable decomposition: the svd of a matrix,”
The college mathematics journal, vol. 27, no. 1, pp. 2–23, 1996.

[5] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P
Vetrov, “Tensorizing neural networks,” in Advances in neural informa-
tion processing systems, 2015, pp. 442–450.

[6] Tyson R Browning, “Applying the design structure matrix to system
decomposition and integration problems: a review and new directions,”
IEEE Transactions on Engineering management, vol. 48, no. 3, pp. 292–
306, 2001.

[7] Tianxing He, Yuchen Fan, Yanmin Qian, Tian Tan, and Kai Yu,
“Reshaping deep neural network for fast decoding by node-pruning,” in
2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2014, pp. 245–249.

[8] Chao Liu, Zhiyong Zhang, and Dong Wang, “Pruning deep neural
networks by optimal brain damage,” in Fifteenth Annual Conference
of the International Speech Communication Association, 2014.

[9] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distilling the knowledge
in a neural network,” arXiv preprint arXiv:1503.02531, 2015.

[10] Zhiyuan Tang, Dong Wang, and Zhiyong Zhang, “Recurrent neural
network training with dark knowledge transfer,” in 2016 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2016, pp. 5900–5904.

[11] Yoav Freund, Robert E Schapire, et al., “Experiments with a new
boosting algorithm,” in icml. Citeseer, 1996, vol. 96, pp. 148–156.

[12] Leo Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[13] J Ross Quinlan et al., “Bagging, boosting, and c4. 5,” in AAAI/IAAI,
Vol. 1, 1996, pp. 725–730.

[14] Sirui Xu and Eric Fosler-Lussier, “Application of progressive neural
networks for multi-stream wfst combination in one-pass decoding,” in
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 5914–5918.

[15] Takafumi Moriya, Ryo Masumura, Taichi Asami, Yusuke Shinohara,
Marc Delcroix, Yoshikazu Yamaguchi, and Yushi Aono, “Progressive
neural network-based knowledge transfer in acoustic models,” in 2018
Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC). IEEE, 2018, pp. 998–1002.

[16] Harris Drucker and Corinna Cortes, “Boosting decision trees,” in
Advances in neural information processing systems, 1996, pp. 479–485.

[17] Holger Schwenk and Yoshua Bengio, “Boosting neural networks,”
Neural computation, vol. 12, no. 8, pp. 1869–1887, 2000.

[18] Md Monirul Islam, Xin Yao, SM Shahriar Nirjon, Muhammad Asiful Is-
lam, and Kazuyuki Murase, “Bagging and boosting negatively correlated
neural networks,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 38, no. 3, pp. 771–784, 2008.

[19] Douglas B Paul and Janet M Baker, “The design for the wall street
journal-based csr corpus,” in Proceedings of the workshop on Speech and
Natural Language. Association for Computational Linguistics, 1992, pp.
357–362.

[20] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Brian Kingsbury, et al., “Deep neural networks for acoustic
modeling in speech recognition,” IEEE Signal processing magazine, vol.
29, 2012.

[21] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej
Glembek, Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin
Qian, Petr Schwarz, et al., “The kaldi speech recognition toolkit,” Tech.
Rep., IEEE Signal Processing Society, 2011.

[22] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah Ghahremani,
Vimal Manohar, Xingyu Na, Yiming Wang, and Sanjeev Khudanpur,
“Purely sequence-trained neural networks for asr based on lattice-free
mmi.,” in Interspeech, 2016, pp. 2751–2755.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

465

