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Abstract—In this work, we propose a new strategy for
deep mixture of experts (DMoE) based speech enhancement.
DMOoE system is difficult to train due to the specific network
structure and the necessity of carefully designed pre-training
methods to guarantee good performance. We propose using
distinguishing deep neural networks (DNNs) as experts, dealing
with magnitude spectrogram and log-magnitude spectrogram
respectively. The proposed method is compared with the state-
of-art DMoE system utilizing hard expectation maximization
(HEM) pre-training method. Speech enhancement experiments
in 30 (5*6) noise and SNR conditions show the superiority of
the proposed method over the baseline method. The average
improvements obtained for matched conditions are 0.076 in
perceptual evaluation of speech quality (PESQ), 1.824dB in
segmental signal to noise ratio (segSNR) and 0.043 in short
time objective intelligibility (STOI).

I. Introduction

Speech enhancement is widely used in many real world
applications such as speech communication, automatic
speech recognition, hearing aids, etc.[1] The main task of
speech enhancement is to suppress the noise in a noisy
speech recording while keeping the distortion level as
low as possible. Monaural speech enhancement is very
challenging due to the nonstationary property of both the
speech and noise signals, while lacking of other useful clues
such as spatial information.

DNN is a powerful tool for complex classification and
regression tasks. It uses a cascade of nonlinear processing
units to model the relationship between inputs and out-
puts, and learns the model parameter from data. During
the last decades, DNN has shown great advantage in
speech enhancement area. DNN based monaural speech
enhancement method can be divided into two categories
according to the training target, i.e., mask based ones
and mapping based ones. Ideal binary mask (IBM) [2]
is the first training target used in DNN based speech
enhancement methods. It uses time-frequency analysis
techniques such as short time frequency transform (STFT)
to get the spectrogram of the noisy signal. A mask, 0
or 1 for each time-frequency unit in IBM, is generated
according to the local signal-to-noise ratio (SNR) of
the unit. The mask is then applied to the spectrogram
and an iSTFT step is carried out to get the enhanced
signal. Following IBM, some other masking strategies are
proposed, for example, ideal ratio mask (IRM) [3], spectral
magnitude mask (SMM) [4], complex ideal ratio mask
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(cIRM) [5], phase-sensitive mask (PSM) [6], etc. In the
mapping based category, instead of predicting a mask,
the DNNs are used to map the noisy speech features
to the enhanced ones directly. The most commonly used
features in this category of methods is the log-magnitude
spectrogram [7][8].

Despite of all the differences among these methods, they
all use one single DNN as the predicting model. Although
the DNNs are becoming more and more powerful, it is
believed that it would be easier for two or more DNNs
working together to learn the varied patterns in speech
enhancement than a single DNN. Several algorithms based
on two or more DNNs have been explored during the
last several years. Wang [9] proposed a fully discrimina-
tive approach. In the training phase, forty DNNS were
trained, one for each phoneme, to predict the IRM. In
the test phase, a robust automatic speech recognition
(ASR) system was used to detect the phoneme label,
and the mask generated by the corresponding DNN was
applied to enhance the speech. Chazan [10] proposed a
different method. He used thirty-nine phoneme-specific
DNNs and one phoneme-classification DNN. A speech
presence probability (SPP) based soft spectral subtraction
algorithm was used to suppress the noise. The phoneme-
specific DNNs were pre-trained according to phoneme
labels, one for each label. A joint training step was then
carried out to optimize the entire set of DNNs. These
methods use phoneme information to train or pre-train the
DNNs. However, phoneme-labeled database is not always
tractable and a large amount of DNNs consume a lot of
calculation and storage resources.

Chazan [11] proposed that instead of phoneme informa-
tion based pre-training, a modified expectation maximiza-
tion (EM) algorithm can also be used to train the DMoE
system to avoid the convergence problem. A weighted back
propagation equation was proposed, such that one sample
would have different effect on each expert DNN. This
method can be interpreted as a soft EM training strategy,
while the weights have an inverse proportional relationship
with the prediction error of each expert DNN. Two expert
DNNs were used in the method, and simulation results
showed that more experts were not helpful to the enhance-
ment performance. Following Chazan’s work, Karjol [12]
proposed a hard expectation maximization pre-training
strategy, and got better performance. All these DMoE
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systems mentioned above use homogeneous expert, which
means that the expert DNNs have same structure, and
the inputs and outputs of them are similar with respect
to their physical meaning and distribution. In this work,
we propose a DMoE system with distinguishing experts.
We name it as deep mixture of distinguishing experts
(DMoDE). DMoDE system has two main advantages.
Firstly, it is easier to train. DMoDE can be trained
with normal back-propagation algorithm, while traditional
DMOoE systems need carefully designed training strategies
to avoid the convergence problem. Secondly, it has better
performance. Each expert has its own strength, and they
can be complementary with each other.

It should be mentioned here that although our original
intention of proposing the DMoDE system is to improve
the DMoE system on both the training complexity and the
speech enhancement performance, we find out later that
the DMoDE system has some similarity with the ensemble
methods. The ensemble methods, or the fusion methods,
try to propose a framework of combining different speech
enhancement methods to get better performance. Roux
[13] proposed an ensemble learning method. Different
speech enhancement methods based on binary masking
can be combined by either a simple averaging strategy,
or a learned classifier such as support vector machine or
decision trees. Zhang [14] proposed a DNN based ensemble
method. Several DNNs with different context window
length are put together to form a module, and several
modules are stacked together to get the final enhancement
result. The work focusses on the information contained
in the context windows with different length. The DNNs
in the upper module take the outputs of the DNNs in
the lower module as inputs, and there is only one DNN
in the last module so that no extra strategy is needed
to combine the outputs of different DNNs. Jaureguiberry
[15] proposed a fusion method. Instead of the stacking
framework used in the above mentioned methods, the
final result is calculated as a weighted sum of the sub-
methods, such as a NMF-based method and a DNN-base
method. The weight factors are calculated by a single-layer
network, which is claimed to have better performance than
deeper networks. The network takes the original signal
together with the outputs of the sub-methods with a
certain context window as input. In DMoDE, we focus
on taking the advantage of different DNN based methods.
The weighted sum strategy is applied while the weight
calculating network, which is named as gating DNN, takes
only the original signal as input, and the context window
length is the same with the expert DNNs, so that the
whole system can be jointly optimized.

The rest of the paper is organized as follows. In section
2, we briefly introduce the HEM strategy, and describe our
DMOoDE system in detail. Then in section 3, we present
some experiment results and discussion about DMoDE.
Finally, we draw the conclusion and summarize the paper
in section 4.
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Fig. 1. Schematic diagram of DMoE.

II. Deep mixture of distinguishing experts

Deep mixture of experts (DMoE) is a special case of
mixture of experts where the experts employed are DNNs.
The structure of DMoE is shown in Figure 1. N expert
DNNs are trained to solve the problem separately, and a
gating DNN, which is actually a classifier, combines the
outputs of the expert DNNs by a weighted-sum strategy.
The output of such a system ¢ is given by,

N
§= wa(x)ful@) (1)

where NN is the total number of the expert DNNs, x is the
input of the system, f,(z) is the output of the n'* expert
DNN, and wy,(z) is the corresponding weight generated by
the gating DNN. In the scope of speech enhancement, the
input z is a set of features of noisy speech and the target
y can be the corresponding features of clean speech, or
the ideal masks. To train the system, we expect to reduce
the error (¢) between ¢ and y. The objective function to
be minimized can be written as,

1 M
T (2)
=17 2 U, Y wn(wm) fu(wm)

where M is the total number of training samples, x,, and
Ym are input features and output corresponding to the
m!" sample, and d() is an error metric like mean square
error or mean absolute error. However, it has been noted
that training such a model with random initialization may
lead to convergence problem [10]. Several algorithms have
been proposed to solve the convergence problem, among
which the hard EM pre-training strategy [12] has been
proved the most successful. In the following section we
will explain the hard EM pre-training strategy and show
its defect which restricts it performance.

A. Hard EM pre-training

Karjol proposed hard EM pre-training strategy to solve
the convergence problem of DMoE system. To pre-train
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the expert DNNs, a weighted loss function is used,

M
€n = % an,md(ymafn(xm))an: 1,2,..,N (3)
m=1
where M is the total number of the training samples, NV
is the number of expert DNNS, ¢, is the loss of the n*
expert DNN, v, is the target value of the m*" sample,
fn(z,) is the output of the n*" expert DNN corresponding
to the m*" sample, and d() is the error metric. p,, ,, is the
weight of the m!* sample for the nt"* expert DNN.

Pnm = {

With p,, », determined, the expert DNNs can be optimized
by finding the minimum of the objective function via back-
propagation algorithm,

1,if n = argming d(ym, fn(Tm)) (4)
0, otherwise

Qn:argrrlajnen,nzl,2,--~,N (5)

It can be seen that finding the optimal p and 6 is a
chicken-and-egg problem, because they depend on each
other. Karjol proposed to use generalized EM method to
solve this problem. The procedure is as follows:

1) Initialize the parameters §°

2) Calculate p* based on 6" according to Equation (4)

3) Train each expert DNN with p fixed to p' and get
0t+1

4) Repeat step 2 and step 3 until Equation (5) converges

The DMOoE system trained with hard EM pre-training
strategy outperforms the single model based system and
Chazan’s soft EM based DMoE system. However, it still
has two main disadvantages. The first one is that the
EM procedure is very time-consuming. According to the
algorithm, every time p changes, the model needs to
be trained thoroughly. Although the number of training
epochs can be limited to a certain number, the whole
iteration still costs much more time than training a single
DNN-based system. What’s more, as far as we know, no
proof guarantees the convergence of this iteration because
optimization of the DNN itself is a complex procedure. The
second disadvantage is that it cannot detect or avoid the
over-fit problem, which will be shown in section 3.

B. Proposed method

As discussed in previous sections, all of the pre-training
strategies based on hard EM algorithm, soft EM algorithm
and phoneme information can train a DMoE system
successfully. We think that the reason why these pre-
training strategies can help to avoid the convergence
problem is that the pre-training stage sets the expert
DNNs to different status. The pre-trained expert DNNs
have significantly different distributions of outputs corre-
sponding to the same inputs. Based on this difference, the
gating DNN can be trained easily and the whole system
can converge to a certain point. According to this analysis,
we propose a novel way to solve the convergence problem.
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Instead of using the same expert DNNs, we propose to
using distinguishing expert DNNs and we name it as deep
mixture of distinguishing experts (DMoDE).

Log-magnitude (or log-power) spectra has been widely
used in mapping-based speech enhancement system. How-
ever, magnitude spectra can also be used to replace the
log-magnitude spectra and has a different error distri-
bution. Assuming that two DNNs performing the log-
magnitude spectra mapping and magnitude spectra map-
ping respectively are trained equally well, which means
that the outputs of the two DNNs have the same additive
error e, the predicting error of the magnitude spectra
mapping system is:

Emag =€ (6)
and the predicting error of the log-magnitude spectra
mapping system is:

Ejog = exp(log(s) +e) — s
= sx* (exp(e) — 1)

(7)

where s is the magnitude of the corresponding time-
frequency unit. Noting that s > 0, Ej,q and E,,,, have
the same sign. We have:

e

FEi, Frggl & —————>1
[Blog| <| ol s*(exp(e)—1)>
g e (8)
@ S —
° exp(e) — 1

To make the condition more clearly, we draw the last
inequation in figure 2. The solid line stands for the
inequation in Equation (8). The dashed line stands for
s = —e. This is because that in the magnitude spectra
mapping system, the output § of the DNN cannot be
negative.

g=s5+e>0 (9)

The shadow area in figure 2 shows the condition in
equation (8). In [4], Wang proposes a similar deduction
on the error relationship between FFT-mask and log-
magnitude spectra mapping. Wang draws the conclusion
that because in practice, s > 1 when speech is present,
FFT-mask is more accurate than log-magnitude spectra
mapping. However, high prediction accuracy of the large
magnitude time-frequency points only is not enough for
a good speech enhancement system. The time-frequency
points of which the magnitudes are small should be
considered as well. Besides, we normalize the magnitudes
before calculating the log values. This results in more time-
frequency points whose magnitudes are smaller than 1 and
are more likely locating in the shadow area in Figure 2.
Figure 3 shows the simulation results of the relative
relationship between Ej,, and Ey,.4. The two DNNs are
trained with the same setup which is described in section
3. The error results are calculated under the condition of
0dB babble noise with 100 sentences from TIMIT dataset.
The bin-wise average absolute errors are divided by the
errors of the magnitude spectra mapping model to get the
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Fig. 3. simulation results of the relative relationship between Ej.g
and Emag

relative errors. The dash-dot line which has a constant
value of one stands for the magnitude spectra mapping
model and the solid line stands for the log-magnitude
spectra mapping model. The bins in Figure 3.a have the
equally divided range of magnitude. It proves that only
when the magnitudes are small, Ej,, is supposed to be
smaller than Ej,q4. The bins in Figure 3.b have the same
number of time-frequency points. The points are sorted
according to the magnitudes. It can be seen that more than
seventy percent of the time-frequency points have smaller
error with the log-magnitude spectra mapping system.
The proposed DMoDE system is as follows. It has
the same global structure with DMoE system, which is
depicted in Figure 1. It includes N = 2 expert DNNs. The
expert DNN 1 is trained for magnitude spectra mapping
and the expert DNN 2 is trained for log-magnitude spectra
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mapping. The input x and the output 3 are the magnitude
spectra of noisy and enhanced speech respectively. Note
that log() and exp() are implemented as the input and
output layer in expert DNN 2. In this way, the inputs
and outputs of the two expert DNNs are consistent and
the whole system can be optimized jointly. To train the
DMOoDE system, we first pre-train the two expert DNNs as
two independent single DNN-based speech enhancement
model. After that we fix the parameters of the two expert
DNNs and train the gating DNN. At last we jointly train
the whole system for a few epochs. The experiment results
and discussions are presented in the next section.

ITI. Experiment results

A. experiment setup

We use TIMIT [16] and NoiseX-92 [17] databases for
clean speech and noise recordings respectively. TIMIT
database is divided into train and test categories con-
taining 4620 and 1680 speech utterances respectively and
the sampling rate is 16kHz. The noise recordings includes
15 types of noise, and the sampling rate is 19.92kHz. To
generate the noisy speech signals, we down sample the
noise recordings to the sampling rate of 16kHz. Five types
of noise recordings are used for training, which are babble,
white, factoryl, buccaneerl and destroyerops. Utterances
chosen from the train category of TIMIT database are
mixed with these five noise recordings at six different SNR
levels, -5dB, 0dB, 5dB, 10dB, 15dB and 20dB. Thus, we
have 30 configurations (5 noise types and 6 SNR levels).
We randomly choose 200 utterances for each configuration.
These 6000 utterances are divided into train and validation
set at a ratio of 8:2. To generate the test set, we randomly
choose 60 utterances from the test category of TIMIT
database for each configuration. Extra four types of noise,
namely f16, leopard, machinegun and pink, are used to test
the generalization performance in unmatched situation.

The DMoDE system includes three DNNs, and each
DNN has three hidden layers with 2048 units for each
layer. ReLLU is used as the activation function. The frame
length is set to 512 points and the overlap length is 256
points. The input of the system consists of seven frames,
with the target frame in the middle of the segment.
The output of the system includes the target frame
only. Except for the proposed DMoDE system, four other
methods are implemented for comparison, which are the
log-magnitude spectra mapping system, the magnitude
spectra mapping system, the original DMoE system [12],
and the magnitude mapping based DMoE system, donated
as S-log, S-mag, D-log and D-mag respectively. The DNNs
in these systems have the same setup with DMoDE
system.

We compare the performance of the different systems
in terms of PESQ, STOI and segSNR. PESQ measures
the perceptual quality of speech, while STOI measures
the intelligibility. SegSNR provides information about the
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average reconstruction error across frames with respect to
the clean speech.

B. results and discussion

TABLE I
Experiment results in matched situation

PESQ
-5dB | 0dB [ 5dB | 10dB | 15dB [ 20dB
noisy 1.275 | 1.609 | 1.977 | 2.355 | 2.715 | 3.071
S-log 1.690 | 2.172 | 2.574 | 2.902 | 3.137 | 3.291
S-mag | 1.917 | 2.340 | 2.682 | 2.936 | 3.109 | 3.228
D-log 1.765 | 2.244 | 2.640 | 2.966 | 3.207 | 3.360
D-mag | 1.942 | 2.356 | 2.683 | 2.951 | 3.147 | 3.298
ours 1.932 | 2.359 | 2.711 | 3.010 | 3.235 | 3.389
STOI
-5dB | 0dB [ 5dB | 10dB | 15dB [ 20dB
noisy 0.551 | 0.668 | 0.779 | 0.869 | 0.932 | 0.969
S-log 0.627 | 0.745 | 0.823 | 0.875 | 0.908 | 0.933
S-mag | 0.692 | 0.802 | 0.874 | 0.920 | 0.948 | 0.965
D-log 0.641 | 0.756 | 0.835 | 0.885 | 0.917 | 0.941
D-mag | 0.696 | 0.807 | 0.878 | 0.924 | 0.953 | 0.969
ours 0.695 | 0.807 | 0.879 | 0.926 | 0.954 | 0.971
SegSNR
-5dB [ 0dB | 5dB [ 10dB | 15dB [ 20dB
noisy -7.04 | -4.33 | -1.01 2.75 6.76 10.99
S-log 0.24 1.89 3.63 5.30 6.75 8.14
S-mag 0.32 2.53 4.96 7.42 9.50 11.11
D-log 0.42 2.08 3.87 5.52 7.04 8.55
D-mag | 0.17 2.40 4.86 7.45 9.76 11.59
ours 0.50 2.71 5.21 7.80 10.13 | 12.07
TABLE II
Experiment results in unmatched situation
PESQ
-5dB | 0dB [ 5dB | 10dB | 15dB [ 20dB
noisy 1.571 | 1.938 | 2.292 | 2.634 | 2.967 | 3.277
S-log 1.855 | 2.291 | 2.660 | 2.952 | 3.188 | 3.377
S-mag | 1.836 | 2.254 | 2.606 | 2.889 | 3.095 | 3.250
D-log 1.874 | 2.340 | 2.709 | 3.005 | 3.248 | 3.440
D-mag | 1.694 | 1.921 | 2.021 | 2.061 | 2.100 | 2.132
ours 1.990 | 2.411 | 2.767 | 3.051 | 3.276 | 3.467
STOI
-5dB | 0dB [ 5dB | 10dB | 15dB [ 20dB
noisy 0.656 | 0.739 | 0.817 | 0.884 | 0.931 | 0.962
S-log 0.662 | 0.756 | 0.825 | 0.872 | 0.901 | 0.923
S-mag | 0.658 | 0.779 | 0.860 | 0.910 | 0.939 | 0.957
D-log 0.673 | 0.768 | 0.835 | 0.881 | 0.911 | 0.932
D-mag | 0.574 | 0.670 | 0.730 | 0.764 | 0.787 | 0.802
ours 0.698 | 0.802 | 0.873 | 0.919 | 0.947 | 0.965
SegSNR
-5dB | 0dB [ 5dB | 10dB | 15dB [ 20dB
noisy -4.88 | -2.04 1.27 4.94 8.78 12.57
S-log 0.41 1.76 3.20 4.61 6.04 7.21
S-mag 0.23 2.49 4.75 6.93 9.01 10.61
D-log 0.81 1.99 3.42 4.90 6.38 7.71
D-mag | -1.38 0.24 1.46 2.22 2.74 3.06
ours 0.83 3.11 5.37 7.55 9.72 11.58

Table 1 shows the experiment results in matched situa-
tion and table 2 shows the results in unmatched situation.
It can be seen that our DMoDE system outperforms
the other systems in most of the configurations. Roughly
speaking, the DMoDE system is better than the DMoE
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systems, and the DMoE systems are better than the
corresponding single DNN based systems. The perfor-
mance of the magnitude spectra mapping based systems
is better than that of the log-magnitude spectra mapping
based ones in terms of STOI and SegSNR. However,
in unmatched situation, log-based systems have better
performance in terms of PESQ. Note that when SNR is
high, for example, 20dB, the other systems tend to degrade
the STOI or SegSNR of the speech, while the proposed
DMoDE system are more likely to have a positive effect
on the speech.

Another interesting thing is that the magnitude based
DMOoE system performs badly in unmatch situation but
performs quite well in matched situation. We think this is
because of the overfitting problem. If the expert DNNs are
overfitted after the pre-training stage, the joint-training
stage will make little modification to them, which will
result in a overfitted system. As far as we know, there is
no strategy in the DMoE system to avoid overfitting in the
pre-training stage, and the complex pre-training strategy
makes it difficult to test whether the expert DNNs are
overfitted. In the proposed DMoDE system, this is avoided
by early stopping strategy with a validation set in the pre-
training stage.

Compared with the HEM pre-trained DMoE system,
the DMoDE system has an average improvement of 0.076
in pesq, 0.043 in stoi and 1.82dB in SegSNR in matched
situation, and 0.058 in pesq, 0.034 in stoi and 2.16dB in
SegSNR.

IV. Conclusion

In this paper, we proposed a DMoDE system which uses
a log-magnitude spectra mapping DNN and a magnitude
spectra mapping DNN as the experts. Such system solves
the convergence problem in a novel way, and takes the
advantages of the two different expert DNNs to improve
the performance. The proposed system outperforms single
DNN systems and DMoE systems both in matched and
unmatched situation. The expert DNNs can be replaced
by more competitive DNNs such as LSTM, CRNN, etc.,
which is a part of our future works.
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