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Abstract—Intracranial electrocorticogram (iEEG) is often used
by clinical experts to determine the location of the epileptic focal
in the treatment of epilepsy. However, assess the location of
epileptic foci by using iEEG is time-consuming and strenuous
for clinical experts. Technology for automated localization of the
channel of epileptic focal is indispensable. Hence, we developed a
one-dimensional convolutional neural network (1D-CNN) model,
which can directly extract features and train model by the raw
signals without preprocessing, and performed the classification of
focal and nonfocal epileptic iEEG signals. Compared with other
machine learning methods, the amount of parameter reduced
significantly. Our developed model has yielded the classification
accuracy of 85.14% in classifying the focal and nonfocal epileptic
iEEG signals.

I. INTRODUCTION

According to the World Health Organization, there are more
than 50 million people with epilepsy in the world. Epilepsy
has become one of the most common neurological diseases in
the world. Epilepsy is a chronic disease of the brain, which is
caused by abnormal discharge of some brain tissue. Up to 70%
of epileptic patients can control seizures through the proper use
of antiepileptic drugs. For patients with drug-resistant, surgical
treatment may be useful [8].

The difficulty of surgical treatment of epilepsy lies in the
accurate localization of epileptic foci before the operation.
Clinical experts need to place multiple electrodes in the
patient’s scalp, record iEEG for one week and visually detects
the obtained iEEG to speculate the location of abnormal
discharge of brain tissue, and then perform resection surgery
[15]. It is a heavy burden for clinicians, both time-consuming
and strenuous. Hence, there is an urgent need for a technique
which could automatically identify epileptic focal signals.

In recent years, machine learning has been widely used in
various fields, including biomedical field [14]. The application
of various machine learning methods has greatly reduced the
burden on clinical experts. In neuroscience, various machine

learning methods are often used to process EEG (electrocor-
ticogram) signals to assist clinicians in diagnosing patients.

The most common sequential steps are preprocessing, fea-
ture extraction, training, and classification when developing an
automated diagnostic system by using machine learning [13].
To standardize the input of the model in the subsequent step,
the raw signals are always being normalized and transformed
in the preprocessing stage. Entropy [7] [10] [11] [4], Wavelet
Transform [6], Fourier Transform, Empirical Mode Decompo-
sition (EMD) [10] [4] and other methods are always used to
extract the significant features from the signals in the feature
extraction stage. In the training stage, K-Nearest Neighbor
(KNN), Support Vector Machine (SVM) [7] [3], Recurrent
Neural Network (RNN) [9] and the other neural network,
are widely used for the classification of features obtained by
handle-crafted feature extraction methods.

Instead of the manual feature extraction method, a 21-
layer end-to-end one-dimensional convolutional neural net-
work (1D-CNN) is used to the automated classification of
focal and nonfocal iEEG signals in this study. Focal iEEG
signals could be classified automatically from the iEEG signal
recordings. We use the Bern-Barcelona dataset to perform the
classification process. Raw signals will be the input of the
network, no preprocessing and no feature extraction so that
the computational is reduced significantly.

The rest of this paper is organized as follows. Section 2
introduces the Bern-Barcelona Dataset. Section 3 introduces
the methods and the developed 1D-CNN model. Section 4
provides the result and discussion. Finally, the conclusion is
provided in Section 5.

II. DATASET

The iEEG signals from the Bern-Barcelona dataset provided
by Andrzejak et al. at the Department of Neurology of the
University of Bern, were obtained from the recordings of
five epilepsy patients with focal epilepsy [1]. All patients
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Fig. 1. An example of focal and nonfocal epileptic iEEG signals

TABLE I
VARIOUS ATTRIBUTES OF THE BERN-BARCELONA DATASET

No. Attributes Values
1 Dataset shape 15,000×10,240
2 The number of focal signals 7,500
3 The number of nonfocal signals 7,500
4 Sampling time 20 s
5 Sampling frequency 512 Hz
6 Frequency band 0.5-150 Hz

suffered from long-standing pharmacoresistant temporal lobe
epilepsy and were candidates for epilepsy surgery patients.
According to whether the signals were obtained from the
focal channels, the dataset is divided into two categories. Each
category contains 3,750 pairs sample with a duration of the
20 s sampled at a frequency of 512 Hz rendering 10,240
data points per sample. The dataset was processed by digitally
band-pass filtered between 0.5 and 150 Hz by using a fourth-
order Butterworth filter. All of the signals were labeled as
focal signals or nonfocal signals by clinical experts. The iEEG
signals that during seizure activity and three hours after the
last seizure were excluded.

An example of focal and nonfocal iEEG signals is shown
in Fig. 1, respectively. The various attributes of the Bern-
Barcelona dataset is provided in Tabel I.

III. METHOD

Developed one-dimensional convolutional neural network
(1D-CNN) model was used for the classification of focal and
nonfocal iEEG signals in this study. This model allows the
raw iEEG signals to be entirely classified directly without any
feature extraction stage.

Five different types of layers are used in the developed
1D-CNN model: convolutional layer, pooling layer, fully con-
nected layer, dropout layer, and batch normalization layer.

We use convolutional kernels with a size of 3×1 in each
layer to make the feature extraction stage will not have too
much computation. In order not to miss any features, we set the
stride of the convolutional kernel to 1. Relu activation function
is used in all of the convolutional layers. The amount of filters
is set to the N power of 2 (N ≤ 6). We set the max-pooling
layers which pool size as 2×1 and stride as 2 after every

TABLE II
PARAMETER VALUES OF THE DEVELOPED 1D-CNN MODEL

No. Layer name Kernel size Stride Number of
parameters

Other
parameters

0 Input - - - -
1 Conv1D 2×3 1 8 -
2 Dropout - - 0 Rate = 0.2
3 MaxP 2 2 0 -
4 BN - - 20,480 -
5 Conv1D 4×3 1 28 -
6 MaxP 2 2 0 -
7 Conv1D 8×3 1 104 -
8 MaxP 2 2 0 -
9 Conv1D 16×3 1 400 -
10 MaxP 2 2 0 -
11 Conv1D 32×3 1 1,568 -
12 MaxP 2 2 0 -
13 Conv1D 64×3 1 6,208 -
14 MaxP 2 2 0 -
15 Dropout - - 0 Rate = 0.2
16 Flatten - - 0 -
17 FC 128 - 1,310,848 -
18 Activation - - 0 Relu
19 Dropout - - 0 Rate = 0.5
20 FC 2 - 258 -
21 Softmax 2 - 0 -

convolutional layer so that we could reduce the computation
of the whole model, and won’t miss the pivotal features. All
the feature maps obtained from layer 16 are flattened into a
one-dimensional feature vector as the input of layer 17. The
output obtained from the first fully connected layer will be
nonlinear by using Relu activation function and dropout with
a rate of 0.5 and then as the input of layer 20. To perform
the classification process, we set the softmax layer as the last
layer of the developed 1D-CNN model. In this layer, input
iEEG signals are classified as focal and nonfocal.

One of the biggest challenges in this developed model
is overfitting. We added the dropout layer [12] and Batch
Normalization layer [5] in various positions to reduce the
effect of overfitting. Batch Normalization layer in layer 4
performed the normalization for the output obtained from the
upper max-pooling layer in this study. The detailed parameter
values of the developed 1D-CNN model are provided in Table
II.

IV. RESULT AND DISCUSSION

The Bern-Barcelona iEEG dataset used in the study was
recorded by Andrzejak et al. We split the iEEG database into
three parts: train set (80%), validate set (10%) and test set
(10%). The training dataset and the validation data were used
during the learning stage, and test data was used during the
testing stage. Thus, 12,000 out of a total of 15,000 samples
were used for training, 1,500 were used for the validation,
and the remaining 1,500 were used for the test. We used 10-
fold cross-validation to ensure the results more dependable.
A detailed illustration of the data sets used for this study is
shown in Fig. 2. Fig. 3 shows the details and output shape of
every layer of the developed 1D-CNN model, and the main
hyper-parameters used in the architecture are given in Table
III.

A batch’s size of 128 with a size of 10,240 are randomly fed
into the network in each epoch of training. The performance
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Fig. 2. The illustration of the data set used to develop this model

TABLE III
HYPER-PARAMETER VALUES OF THE DEVELOPED 1D-CNN MODEL

No. Parameters Values
1 Batch size 128
2 Epoch 200
3 Optimizer Adam
4 Learning rate 2.5e-4
5 Loss function Categorical cross entropy
6 Metrics accuracy
7 Activation Relu

graphs of the 1D-CNN model during the training and the
validation is shown in Fig. 4.

It can be seen from the performance graphs that, there still
has overfitting problem in the model although we’ve already
used dropout layer and batch normalization layer. We speculate
that the representation of the Bern-Barcelona dataset on one-
dimensional convolutional is not obvious. During the training
phase of the model, the training accuracy is about 99%, and the
validation accuracy is about 85%. In 10-fold cross-validation,
the average validation accuracy is about 85.14%.

Some of the published works are recorded in Table IV.
Although the developed model could not yield a great classifi-
cation performance, it still managed to obtain 85.14% accuracy
without any preprocessing before the training stage in this
model. Compared with the other feature extraction methods
such as entropy, DWT and EMD, the 1D-CNN model has
further advantages. It is less computational, and extraction of

Fig. 3. Block representation of the developed 1D-CNN model

TABLE IV
PERFORMANCE COMPARISON OF THE DEVELOPED MODEL WITH OTHER

WORKS ON THE SAME DATASET

Authors Feature Extraction Classifier Accuracy (%)
Sharma et al. 2015 [10] EMD, entropy LS-SVM 87
Sharma et al. 2015 [11] DWT, entropy LS-SVM 84
Chen et al. 2015 [3] DWT SVM 83.07
Das et al. 2016 [4] EMD-DWT, entropy KNN 89.4
Itakura et al. 2017 [7] BEMD, entropy SVM 86.89
Bhattacharyya et al. 2017 [2] TQWT, entropy LS-SVM 84.67
This model 1D-CNN 85.14

one-dimensional subsequences from the signal with reduced
the number of features.

Various evaluation criteria have been selected for the test
data. The summation of the confusion matrix obtained for the
test data from this model in 10-fold cross-validation is shown
in Tabel V and the performance measures of this 1D-CNN
model are shown in Tabel VI. From the confusion matrix table,
we could know that the developed 1D-CNN model classified
the test iEEG signals with a sensitivity (TPR) ratio of 88.76%
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Fig. 4. Performance graphs of the model during the training and the validation

TABLE V
THE CONFUSION MATRIX OBTAINED FROM THIS 1D-CNN MODEL

Class Focal Nonfocal
Focal TP = 6259 FP = 1404
Nonfocal FN = 825 TN = 6512

and specificity (TNR) ratio of 81.68%.
The Receiver Operating Characteristic Curve (ROC Curve)

and the Area Under the Curve (AUC) of this 1D-CNN model
is shown in Fig. 5. The value of the AUC has reached
92.17%, which means the developed model could make a great
classification of the test data.

V. CONCLUSION

It is a challenging task to distinguish the focal channels by
iEEG signals in interictal. As the occurrence of seizures causes
brain damage, the accurate detection of focal location could
aid the clinical experts to validate their screening of iEEG
signals and provide proper treatment to the patients earlier.
We developed a one-dimensional convolutional neural network
(1D-CNN) model to automate detect the epilepsy focal signals
in this study. Our developed model is able to detect the focal
signals with an accuracy of 85.14% by using raw signals
without any preprocessing. Compared with the other methods,
computational reduced significantly, which means the training
time reduced greatly. We intend to optimize our model by
some methods such as data augmentation to increase the test
accuracy in the future.

ACKNOWLEDGMENT

This work was supported by JST CREST Grant Number
JPMJCR1784, JSPS KAKENHI (Grant No. 17K00326 and
18K04178).

REFERENCES

[1] Ralph G Andrzejak, Kaspar Schindler, and Christian Rummel. Non-
randomness, nonlinear dependence, and nonstationarity of electroen-
cephalographic recordings from epilepsy patients. Physical Review E,
86(4):046206, 2012.

[2] Abhijit Bhattacharyya, Ram Pachori, and U Acharya. Tunable-Q wavelet
transform based multivariate sub-band fuzzy entropy with application to
focal EEG signal analysis. Entropy, 19(3):99, 2017.

Fig. 5. The Receiver Operating Characteristic Curve of this 1D-CNN model

TABLE VI
THE PERFORMANCE MEASURES OF THIS 1D-CNN MODEL

Class TPR TNR FPR FNR Precision F1-Score
Ratio(%) 88.76 81.68 18.32 11.24 82.26 85.39

[3] Duo Chen, Suiren Wan, and Forrest Sheng Bao. Epileptic focus
localization using EEG based on discrete wavelet transform through
full-level decomposition. In 2015 IEEE 25th International Workshop
on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE,
2015.

[4] Anindya Bijoy Das and Mohammed Imamul Hassan Bhuiyan. Dis-
crimination and classification of focal and non-focal EEG signals using
entropy-based features in the EMD-DWT domain. Biomedical Signal
Processing and Control, 29:11–21, 2016.

[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.
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