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Abstract—In this paper a simpler convolutional neural net-
work with a joint pre-processing is proposed for hyperspectral
image classification. Primarily the spectral dimension of raw
hyperspectral data cube is reduced in a unique fashion by using
PCA and DCT such that the data is reduced effectively but
having much information intact for classification task. The raw
data cube is divided into two small spectrally reduced cubes,
the first cube (PCA cube) is a simple PCA based dimension
reduction considering few top principal components and the
second cube (PDCT cube) performing DCT as preliminary
step which confined maximum energy into low frequencies and
then subsequently applying PCA by selecting same number of
principal components as in the first PCA cube. After that both
PCA and PDCT cubes are fused together, furthermore ICA is
carried out on fused data cube to make the output classes much
independent for next steps. In the final pre-processing step, the
ICA performed data cube is divided into small square patches
having labeled center pixel and a fixed size neighboring pixels
by considering that in hyperspectral image neighboring pixels
are highly correlated and having same class label. These square
patches are fed into our simpler convolutional neural network
which effectively and automatically extract the suitable features
for our classification prediction job. The results validated that
our acclaimed model which mainly exploit a novel pre-processing
tactic and simpler but effective CNN performs enormously well
in comparison to the other compared models and can be used
as an effectual classification model for hyperspectral images in
particular.

I. INTRODUCTION

The vast spectral and spatial information embedded in
hyperspectral images (HSI) make it more useful for various
applications. The HSI data after slight revision, adaptation
and processing can be useful for many fields. Few of them
are agriculture [1], defense and security [2], food industry [3],
medical [4], astronomy and environment monitoring. The HSI
data cube contains spatial and spectral information and is quite
different from typical RGB images in terms of information
processing and labeled data availability. The classification
is considered as the most widespread exploration area for
HSI analysis, which ambitions at assigning a pre-defined
class label to every pixel. Previously, many works have been
suggested by employing spectral data alone [5], [6] but not
gain much popularity and higher accuracy. Recently many
works combined the spectral data and the spatial contextual
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information [7], [8] with better results and now it is implicit
that both spectral and spatial data is imperative for better
classification results.

Most recently, numerous deep learning (DL) architectures
have emerged and have been successfully applied in the
areas like audio recognition [9], natural language processing
[10] and image classification [11], where they outperformed
the traditional methods. Moreover for HSI classification in
particular, DL based methods also reached up to the level
where they used combined spectral-spatial methods for better
classification. Few renowned DL methods for HSI classifica-
tion are convolutional neural network (CNN) [12]–[14], stack
autoencoders [15], deep belief network [16] and deep stacking
network [17]. In particular, CNN has gained much fame due to
their superior enactment in terms of automatic and appropriate
feature extraction after exhaustive training. The CNN can ac-
quire feature illustrations through several convolutional blocks
and can hierarchically learn low level, mid-level and higher
level features. The typical CNN architecture consists of several
feature-extraction layer, one or more fully connected layer and
a classifier. Where each feature extraction layer consists of a
convolutional layer, a nonlinearity layer and optional pooling
layer.

More recently, He [18] and Zhong [14] attained promising
accuracy with 3D deep convolutional networks which are
end-to-end approaches. However, the 3D CNN approach has
higher complexity with deep 3D convolutional layers, excess
of parameters, long training and testing time and most im-
portantly the testing time is comparatively high which limits
it for real time applications. In HSI many spectral bands are
highly correlated and thus using dimension reduction approach
is the most famed and direct solution to accommodate the
Hughes phenomenon [19] using feature selection to find a
suitable subset of the original spectral dimension of HSI. Few
mathematical transformations are popular in HSI for feature
selection or dimension reduction like principal component
analysis (PCA) [20], independent component analysis (ICA)
[21], wavelet transform (WT) and minimum noise fraction
(MNF). Among those techniques, PCA is the most com-
monly used method which select the spectral bands after
a transformation based on variance of data. The work [13]
used randomized PCA to select principal components (PCs)
containing 99% variance along spectral dimension and gain
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very promising accuracy with quite shallow CNN. On the
other hand keeping the complexity issue aside, the classes
are well separated by the ICA based feature selection and
can contribute well for classification task. Recently, a discrete
cosine transform (DCT) based pre-processing with ICA for
HSI classification [22] was performed with better results.
The DCT is widely used in image compression and video
compression especially because of its ability to transform the
data from a wide form to a compact form it is also suitable
for hyperspectral data compression [23].

The end-to-end deep learning models are very famous for
HSI classification because of the automatic feature engineering
aspect. However these approaches employ big data for training
and can cause accuracy declination otherwise. On the other
side, apart from few advantages it is really challenging to
find suitable and appropriate features using traditional methods
(like PCA, ICA, etc.). In our work we put together traditional
methods (ICA, PCA and DCT) and a shallow deep learning
model in a way to exploit the advantages of both for the HSI
classification task. The major contributions of our algorithm
IPDCT-CNN are as follows:

1) The DCT compaction property is effectively used as
a preliminary step before PCA, taking advantage of
getting more variance of data in comparatively less
number of spectral bands.

2) The novel approach of using all the three ICA, PCA and
DCT in such a manner to get compact, distinctive and
well separated features in pre-processing step. Which
delivers best accuracy in comparison to use PCA or ICA
alone as a feature selection transformation.

3) Our proposed simplified CNN which automatically and
hierarchically extract spectral-spatial features for final
classification using the IPDCT data.

II. MATHEMATICAL TRANSFORMATIONS

A. DCT

The “energy compaction” eminence of DCT tends the
transformed signal to be compacted in a few low-frequency
components of the DCT. This compaction property can be
suitable for HSI data especially along spectral dimension as
suggested in the work [22]. Suppose there are L spectral bands
of HSI data, then for any pixel “x” we can say x1, x2, ..., xL−1

are L real values for reflectance and after the transformation
the respective DCT coefficients X1, X2, ..., XL−1 can be com-
puted using the Eq. (1).

Xd =
L−1∑
n=0

xn cos
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where d = 0, 1, ..., L− 1
Moreover [23] performed 3D-DCT by repeating 1D-DCT

three times and used it for HSI compression with discrete
wavelet transform (DWT). Inspired with these two works we
performed 3D-DCT along spectral dimension by repeating 1D-
DCT three times using the Eq. (2).
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(b) 1D-DCT of a HSI pixel
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(c) 3D-DCT of a HSI pixel

Fig. 1: Pixel reflectance, 1D-DCT and 3D-DCT plots
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The Figure 1 shows the HSI data pixel without DCT,
with 1D-DCT and 3D-DCT. Although both 1D and 3D DCT
looks quite similar however 3D-DCT provide further energy
compaction.

B. PCA

The transformation is performed by recognizing the princi-
pal directions called principal components (PCs) in which the
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Fig. 2: Comparison of PCA vs PDCT

data varies the most and transforms original data dimension
to a sub-space comparatively of low dimension. As the HSI
spectral data is highly correlated so PCA is most suitable
transformation for dimension reduction. Normally PCA is used
alone for feature selection before a CNN based classifier
like the work in [13], [24] by either selecting few top PCs
or selecting PCs on the basis of certain percentage of data
variance (99% or more) along spectral dimension. However
we evaluated that if we perform suggested 3D-DCT prior to
PCA (called it as PDCT) then it contains more variance of
data in less no of PCs in comparison to the direct PCA based
transformation. So this can further reduce the spectral dimen-
sion and select most pertinent features to tackle classification
task. The Figure 2 shows the fair comparison between PCA
and PDCT for first five PCs for university of Pavia dataset and
it is clearly shown that PDCT contain more variance of data
in comparison to PCA based method.

C. ICA

The key approach in ICA is that the data is a linear mixture
of separate and independent sources. The mixed data can be
transformed into separate signal sources on the basis of their
statistical distinctive properties. The ICA is widely used in
HSI analysis in the area of spectral un-mixing in particular,
for target detection [25] and as a pre-processing step [22] for
HSI classification. The ICA transformation is established on
a non-Gaussian postulation of independence between sources.
Suppose we have an observation vector y = [y0, y1, ..., yR−1],
which is linear mixture of R independent elements of a random
vector source s = [s0, s1, ..., sR−1]. In matrix form the model
will be:

Y = A.S (3)

where A indicates the mixing matrix.
So the ICA transformation estimates a matrix W (i.e., the

inverse of mixing matrix A) to calculate the best possible
assumption of S.

Z =W.Y ≈ S (4)

TABLE I: CNN configuration

Layer
No Input Configuration Filters/Units Output

1 7x7 Conv(P)+BN+Relu 5x5, 20 7x7x20
2 7x7x20 Conv+BN+Relu 5x5, 60 3x3x60
3 Dropout 50%
4 3x3x60 Conv+BN+Relu 3x3, 100 1x1x100
5 Flatten
6 1x1x100 Fully Connected 200 200
7 Dropout 50%
8 200 Softmax N/A 16/9

Normally PCA is a correlation based transformation however
ICA not only de-correlates sources but also makes the sig-
nals independent which is pretty helpful for classification.
It precisely identifies patterns and reduces noise from data
effectively which makes it ideal for dimension reduction. Thus
considering these properties we performed ICA on PDCT data
to further process the reduced data in a way the classes are
more separable retaining the rich patterns and features for
further stages of classification. We referred this algorithm as
IPDCT in the rest of the paper.

III. PROPOSED APPROACH

A. Dimension Reduction

The HSI data cube of dimension L × W × B where
“L” is height, “W”is width and “B” is number of spectral
bands as shown in Figure 3. The raw data cube is divided
into two sub cubes one is PCA cube and other is PDCT
cube as explained earlier. Each cube having “N” number of
PCs or spectral bands on the basis of better classification
results. In the next step both cubes (each of dimension
L ×W × N ) merged and ICA is performed so that IPDCT
data cube of dimension L × W × 2N contain reduced and
more discriminate and separated data for classification. The
spatial-spectral properties of adjacent pixels are quite similar
and highly correlated to each other. So dividing the IPDCT
cube (dimension L × W × 2N ) into square patches of size
P × P × 2N to exploit the neighboring pixels correlation. In
this way the whole IPDCT cube will be divided into K patches
each of dimension P ×P × 2N . Suppose we have G number
of labeled pixels so considering only those patches centered
with labeled pixels and discarding the rest of the patches. If
the HSI raw cube shows the land cover map of “F” number
of classes and C is the matrix C = C1, C2, · · · , CF of that
class labels. Then the G number of patches will be centered
by any one of the class label of set C. For further process
each patch will be taken such that the whole patch belong so
same class label as center pixel of the patch.

B. CNN Framework

The Figure 4 shows a very simplified and shallow IPDCT-
CNN used for feature extraction and classification. The CNN
mainly consists of three convolution layers (CL), one fully
connected layer (FC) and a softmax classifier. We used the
combined batch normalization (BN) and dropout as suggested
in [14] as it gives much better performance even with higher
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Fig. 3: IPDCT based feature selection/dimension reduction part

Fig. 4: Main configuration of CNN

learning rates. In our approach we have not used any pooling
layer (as we ignore scale invariance and translation). We
ignore the borders during convolution operation except the first
convolutional layer where padding is applied to preserve the
input dimension for further layers. The whole configuration of
our CNN is explained in Table I. The selection of filter size
and numbers are on the basis of performance and result will
be shown in next section. Moreover, every patch of dimension
P ×P ×2N is divided into 2N matrices of dimensions P ×P
which are given as input to our CNN which outs suitable high
level features encoding the spectral-spatial individualities of
pixels. Finally these feature maps help for classification after
a training process.

TABLE II: Patch Size vs Accuracy

Patch Size IN UP

3x3 88.40 88.27
5x5 96.66 98.81
7x7 98.53 99.12
9x9 99.05 99.55
11x11 99.20 99.67
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Fig. 5: Number of components vs overall accuracy

IV. EXPERIMENTAL SETTINGS

A. Datasets and Parameters Setting

We used two benchmark datasets Indian Pines (IN) and
University of Pavia (UP) to authenticate our approach. The
UP dataset is collected by ROSIS sensor in northern part of
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TABLE III: Effect of first CL filter and number of filters

First CL filter size Number of Filters(R)

3x3 5x5 7x7 14 16 18 20 22 24

Indian Pines 98.118 98.53 97.67 97.35 98.06 97.72 98.53 98.22 98.24
University of Pavia 98.82 99.12 98.99 98.99 98.95 98.72 99.12 98.91 98.96

TABLE IV: Overall accuracy comparison with other methods

CNN-PPF DCPN P-CNN IDCT-CNN IPDCT-CNN

Indian Pines 94.43 97.10 97.33 97.43 98.53
University of Pavia 96.48 98.51 98.77 98.87 99.12

Italy and it includes 610× 340 pixels (after neglecting the no
information part of image) having geometric resolution of 1.3
meters. They contain 103 spectral bands with the range of 430
to 860 nm and 9 classes. The IN dataset is achieved by AVIRIS
sensor in north western part of Indiana and it comprises of
145× 145 pixels with geometric resolution of 20 meters. The
spectral data is divided into 200 bands (by discarding the bands
with water absorption) within the range of 400 to 2500 nm. It
has in total 16 vegetation land cover classes.

Training epochs are set as 500 and 1200 for IN and UP
datasets respectively. Moreover 30% of labeled patches are
randomly selected for training and 70% for testing for both the
datasets. In order to further create some disparity in training
samples, the data augmentation on 50% of training samples
by using flip up, flip down and random rotation of patches.
The back propagation algorithm is selected for training the
network and the batch size is chosen as 32 for each training
epoch. The network parameters are updated by minimizing the
cross entropy loss function. The model with all the mentioned
setting is trained for both the datasets for maximum number
of epochs. Once the training is finished, the trained model is
saved and test data is evaluated considering the already saved
model and assessment is made on the basis of overall accuracy
of testing samples. First of all following parameters of IPDCT-
CNN are chosen on the basis of experiments.

1) Patch size: In order to evaluate the effect of the patch
size (P × P ), we verified the proposed models with differ-
ent input patches of spatial sizes. Table II shows that the
proposed IPDCT perform strongly for different spatial sizes
and hierarchically conveys discriminative features. In both the
datasets the accuracy increased with effective increase in the
patch size keeping in mind that the more abstract features
by including the neighboring pixels role in determining the
features. However in order to select a suitable patch size we
decided 7x7 patch size as it is most commonly used size
for patch based schemes and also have effective classification

results. Although larger patch size enhance accuracy a bit but
create more complexity in terms of parameters and filter sizes.

2) No of Components: In the dimension reduction section
the number of components (spectral bands) is very important
such that it gives better dimension reduction with maximum
information intact. In this regard experiments were conducted
on IN and UP data set to choose the value of N . We select
6, 8, 10 and 12 for UP dataset and 10, 12, 14 and 16 for IN
data set. On the basis of overall accuracy we select 8 and 12
components for UP and IN dataset respectively. The Figure 5
shows the comparison for number of components with the
overall accuracy for both the selected datasets.

3) Filters for CNN: The selection for the size and number
of filters for a CNN is very tricky as it is always a tradeoff
between accuracy and complexity. So at first we evaluated the
size of filter for only first CL among 3x3, 5x5 and 7x7 in terms
of better accuracy and we found that for both the datasets
5x5 filter size gives best accuracy. Secondly, we conducted
experiments for number of filters in our CNN, for simplicity
we set number of filters in such a way that the first CL has
“R” number of filters 2nd CL, 3rd CL and FC layer has 3×R,
5 × R and 10 × R filters respectively. So by only changing
the value of R we can change the number of filters in all
layers. We conducted experiments for different values of R
between 14 and 24 found that for both datasets the best results
are achieved when R is set as 20. The results are shown in
Table III.

V. RESULT COMPARISON

The usefulness of our method IPDCT-CNN is compared
with other methods like CNN-PPF [26], DCPN [27]. Moreover
we compare our result by performing only PCA before CNN
(called P-CNN) and in other test performing DCT and ICA
(IDCT-CNN) before CNN while retaining the rest of the pa-
rameters as in IPDCT-CNN. In all the comparisons the overall
accuracy (OA) of classification for two datasets are matched.
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The results are stated in the Table IV and it is quite clear
that the best accuracy is achieved by IPDCT-CNN method.
Thus we can conclude that the proposed method is quite
considerate in selection of the most suitable, distinguished and
well disjointed features prior to CNN due to the effective and
unique combination of ICA, PCA and DCT as a pre-processing
step. Furthermore the use of relatively simpler CNN helps
in automatic and hierarchical extraction of the features for
classification of the required classes.

VI. CONCLUSION

In this paper a novel and quite effective joint ICA-PCA-
DCT pre-processing approach for CNN based HSI classifi-
cation is presented. The approach primarily based on suc-
cessfully exploiting the advantages of DCT for compaction
of spectral data of HSI which thus helpful for PCA based
transformation in terms of better and slightly more dimension
reduction. The further use of ICA not only make the feature
more effective but also well separated in terms of class
significance. Finally the CNN consists of 3 convolution layers
and single fully connected layer effectively demonstrated
the classification task on already pre-processed features. The
results revealed that the advocated method of pre-processing
along with CNN can bring a noticeable improvement in
the classification as compared to the standard pre-processing
transformations like PCA and ICA individually.
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