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Abstract— 3D reconstruction is the key technology to emerging 
technologies such as smart robotics, VR/AR/XR and autonomous 
driving. To enhance the robustness of our proposed 3D 
reconstruction system, the HDR-based SLAM is adopted in the 
camera pose estimation step to improve the qualitative result of 
geometric reconstruction. The proposed HDR-based SLAM uses 
the pre-calibrated inverse camera response function (CRF) to 
map a single RGB image into a radiance map. To exclude the 
influence of exposure time, normalized radiance maps 
independent of exposure time are used during tracking. Since 
ORB feature matching is the basic element of tracking and 
mapping in our system, the ORB descriptor patch is re-trained 
especially for normalized radiance maps. Experimental results 
have shown good performance of our system under challenging 
low-light environment, which helps expand the applicability of 3D 
reconstruction system. 

I. INTRODUCTION 

Human discover and explore the globe through their sensory 
perceptions among which the vision is the most important one, 
while the computer receive most of the information with the 
aid of computer vision techniques in the real world. With the 
advance of artificial intelligence technology, the field of 
computer vision has become more popular than ever. On 
account of its wide range of applications, 3D scene 
reconstruction has been one of the most popular topics in 
computer vision over the past few years. Thanks to the launch 
of the consumer-grade depth sensor, the depth information of 
the objective could be obtained more efficiently and 
economically. 

In 3D reconstruction, RGB-D camera is the most commonly 
used sensor for acquiring color and depth information due to 
its low-cost compared with other high expense of precise 
instruments. For tracking objectives in the scene, there are 
mainly two techniques. The first one is the simple frame-to-
frame tracking, only the registration between the current frame 
and the previous frame are conducted based on either point-to-
point or point-to-plane error matrix. However, serious error 
accumulation could occur over time. To diminish the problem, 
frame-to-model tracking has been widely used in recent 
reconstruction frameworks. Frame-to-model tracking establish 
a global model which latter frames are aligned with, thus 
reducing temporal error propagation. Newcombe et al. [1] use 
only depth images and course-to-fine iterative closest point 
(ICP) algorithm to fuse the depth information into the global 
model. Zhou et al. [2] find points of interest through density 
function and obtain globally consistent pose estimation for 

every frame in the scene to reduce alignment errors. Choi et al. 
[3] introduce global pose optimization on the basis of line 
processes which makes the reconstruction pipeline robust to 
erroneous alignment results. Dai et al. [4], instead of registering 
between neighboring frames, combine SIFT feature points with 
pose estimation framework to align current frame with 
keyframes. Our reconstruction pipeline details will be 
introduced in the following contents. 

The High-dynamic-range (HDR) imaging is the technique to 
reproduce a wider range of brightness levels than the 
conventional one, which brings a deeper contrast to the screen, 
greater color intensity without being oversaturated, and more 
detail in low-light images [5]. For low-dynamic-range (LDR) 
imaging, a scene is captured using single exposure and the 
brightness levels are only 256 (8-bit unsigned char), resulting 
in overexposed bright regions or underexposed dark ones. In 
contrast, HDR imaging uses 32-bit float values per channel to 
better represent the luminance information similarly to the 
human visual system. 

HDR images can be obtained using either hardware or 
software. The hardware one uses multiple devices or a device 
with specially designed CCD sensors, which is usually not for 
commercial purposes [6]–[7]. Alternately, the software one is 
more applicable, which uses common camera to obtain LDR 
images first and then transform them to HDR images by 
algorithms. The most common multi-exposure image fusion 
technique captures several images of the same scene with 
different exposure times, then merge them to generate a HDR 
image [8]–[10]. When the scene is dynamic or being captured 
hand-held, the misalignment issue and ghosting artefact need 
to be dealt with [11]–[12]. In addition, a HDR image can also 
be generated by a single LDR image using histogram-based 
methods [13]–[14] or deep learning [15]–[16]. 

In the field of computer vision, given that HDR imaging can 
preserve details in both extremely dark and light regions, it has 
great potential to facilitate various tasks, such as 3D 
reconstruction [17]–[18], visual simultaneous localization and 
mapping (visual SLAM) [19]–[20], object recognition [21] and 
image correction [22]. For 3D reconstruction, Meilland et al. 
[17] is the pioneer work focusing on real-time HDR texture 
mapping. In their visual SLAM system, gamma-based inverse 
CRF is used to transform RGB images into radiance domain 
and use them for tracking. Because the system relies on built-
in auto exposure (AE), camera transformation and exposure 
time need to be estimated jointly. Li et al. [18] also relies on 
AE but decouples exposure compensation from tracking. By 
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using the normalized radiance maps that is independent of 
exposure time, the tracking becomes more robust. Recently, 
some researches focus on actively controlling the exposure 
time [19]–[20] to improve visual SLAM in HDR environments.  

Unlike the previous works, which are based on dense-SLAM 
systems, we propose a feature-based HDR-SLAM, and 
incorporate it into the 3D reconstruction pipeline to improve 
the reconstructed results under low-light environments. The 
remainder of this paper is organized as follows. In Sec. II, we 
present the proposed 3D reconstruction pipeline. In Sec. III, the 
proposed HDR-based SLAM is elaborated. In Sec. IV, 
experimental results are demonstrated. Finally, Sec. V 
concludes this paper. 

II. PROPOSED 3D RECONSTRUCTION PIPELINE 

As shown in Fig. 1, the proposed 3D reconstruction pipeline 
consists of the following three steps: (1) Use the commodity 
handheld RGB-D camera, such as ASUS Xtion, Microsoft 
Kinect or Intel RealSense to scan a scene or an object. In this 
step, 640 ൈ 480  color and depth images are acquired and 
registered. (2) Use the HDR-based SLAM to estimate the 
camera trajectory. (3) Reconstruct the 3D surface mesh by 
fusing depth frames into the truncated signed distance function 
(TSDF) volume. (4) Map color images onto the geometric 
reconstruction. The details of these steps will be elaborated in 
the following subsections.  

A. Camera Pose Estimation 

Camera pose estimation plays an important role in 3D 
reconstruction because more accurate camera trajectory can 
generate better geometric model. Since Visual odometry (VO) 
incrementally estimate the current camera pose based on the 
previous motion, the measurement errors would accumulate 
over time and lead to serious odometry drift. Whereas Visual 
SLAM additionally builds a globally consistent map and uses 
loop closure detection to correct drift, so it can provide more 
accurate camera pose [23]. 

ORB-SLAM2 [24] is known as one of the renowned Visual 
SLAM systems, which is lightweight given the real-time 
performance on standard CPUs. By using strategies including 
loop closing, relocalization, map reuse and bundle adjustment, 
it can achieve state-of-the-art accuracy in a wide variety of 
environment. We choose ORB-SLAM2 in this step and further 
improve it using HDR images as the proposed HDR-based 
SLAM, which will be described in Section III. 

B. Reconstruct The 3D Surface Mesh 

To reconstruct the surface mesh, we first fuse each depth 
images into the TSDF volume [25] and then extract the mesh 
model. The TSDF volume is a 3D cube subdivided into a set of 
voxels. Each voxel in the volume contains a TSDF value and a 
weighting. The TSDF value stores the distances from the 
voxels to the observed surface, and the value is positive when 
in front of the surface, negative when behind, and nearing zero 
when at the surface. To obtain the fused volume, for each raw 
depth map, the data is integrated into the volume from the 
corresponding camera pose and the TSDF values are 

incrementally updated using a weighted average. Then, 
marching cube [26] is used to find the zero-crossings in the 
volume and generate the triangle mesh. 

C. Color Mapping 

The last step of 3D reconstruction is color mapping, which 
maps several color frames to the surface of a model to generate 
textured results. Here we use the comprehensive multi-view 
stereo texturing methods [27] to generate the color texture. 
Compared with volumetric blending used in many 
reconstruction systems [28], it can solve the blurring, ghosting 
and other visual artifacts and generate better results. Although 
the color mapping is the final part to complete the 3D 
reconstruction system, we will not show the textured models in 
Section IV since the texture would affect the qualitative 
evaluation of geometric reconstruction. 

III. PROPOSED HDR-BASED SLAM 

Compared to color images, HDR images in float format can 
present broader range of luminance present in real environment. 
The HDRFusion [18] shows that by integrating the radiance 
map into the SLAM system, both tracking and mapping can be 
improved. Therefore, to improve the ORB-SLAM2, two 
modifications are made: (1) Use normalized radiance maps as 
input instead of RGB-D images (2) Train the patch-descriptor 
especially for normalized radiance maps. 

A. Generate the Radiance Map 

When the depth sensor is held by hand to record a scene or 
an object in sequence, the common HDR imaging methods 
combining multiple images with different exposures is not 
applicable. Given that the camera response function (CRF) 
݂ can map the relationship between RGB pixel values to 
radiances, the inverse CRF ݂ିଵ is used to generate an HDR 
image from a single exposed LDR image. The CRF is defined 
as in [29]: 
 

ܤ ൌ ݂ሺܴ ൅ ݊௦ሺܴሻ ൅ ݊௖ሻ ൅ ݊௤,																							ሺ1ሻ 
 
where ܤ is a pixel brightness value ranged from 0 to 255 and ܴ 
is a radiance value. ݊௦ is the noise dependent to radiance, ݊௖ is 
the constant noise and ݊௤ is the additional quantization noise, 
which can be ignored. Also, both the means of ݊௦ and ݊௖ are 
equal to zero, and their variances are defined as ܸܽݎሺ݊௦ሻ ൌ
ሺ݊௖ሻݎܸܽ ௦ଶ andߪܴ ൌ  .௖ଶ respectivelyߪ

 
Fig. 1. The 3D reconstruction pipeline. 
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The CRF of each camera is different, so it needs to pre-
calibrated. The calibration setting is placing the depth sensor at 
fixed position, and capturing images with different exposures. 
Then, using the method described in [18], the CRF of our Asus 
Xtion sensor can be calculated.  

B. Generate the Radiance Map 

Radiance ܴ  measures how much luminance a sensor 
captured within exposure time ݐ߂, which is formulated as ܴ ൌ
 As in [18], the normalized radiance map is proposed as .ݐ߂ܮ
follows: 
 

				ܴேതതതതሺݑሻ ൌ
ோಿሺ௨ሻିாሺோಿሻ

ඥ௏௔௥ሺோಿሻ
ൌ

ோಿሺ௨ሻ∆௧ିாሺ௅ಿ∆௧ሻ

ඥ௏௔௥ሺ௅ಿ∆௧ሻ
ൌ

௅ಿሺ௨ሻିாሺ௅ಿሻ

ඥ௏௔௥ሺ௅ಿሻ
,			ሺ2ሻ  

 
where ܰ is the 80 ൈ 80 patch, ݑ is a pixel location in the patch 
ܰ , 	ܴேതതതതሺݑሻ  is the normalized value at pixel ݑ ሺܴேሻܧ ,  is the 
mean radiance of the ܰ , and ඥܸܽݎሺܴேሻ  is the standard 
deviation of radiances in ܰ . For example, a 640 ൈ 480 
radiance map would be divided into ሺ8 ൈ 6 ൌ 48ሻ numbers of 
80 ൈ 80  patches, then normalization by (2) is performed 
individually in each patch. 

We can see that after normalization, 	ܴேതതതതሺݑሻ is independent 
of exposure time ݐ߂, and this property is proved to be useful 
when video flickering happens [18]. Depth sensors are usually 
equipped with default auto exposure to better capture images 
similar to the one being seem from human visual system. When 
the camera is moved from bright area to dark area, the exposure 
time is set longer gradually to make the image brighter.  

However, when the camera is moved fast across the 
boundary of bright and dark area, the exposure time changes 
drastically, so that the captured sequence flickers. The issue is 
called video flickering, which would reduce the accuracy of 
camera tracking, or even fail to track. Because the normalized 
radiance map is invariant to exposure time, it can better 
represent the scene comparing to color image when video 
flickering happens. In addition, HDR images can present wider 

range of light conditions.  Therefore, we use normalized 
radiance map as input of our proposed HDR-based SLAM 
system. 

C. Train the patch-descriptor 

HDRFusion is based on direct tacking method, which 
directly optimizes the geometry by minimizing photometric 
errors using all information in the normalized radiance map. In 
comparison, the proposed HDR-based SLAM system is a 
featured-based system. First, the ORB features [30] are 
extracted from RGB images. Then, camera trajectories are 
calculated by optimizing the projection errors between 
corresponding feature points and sparse representation of map 
is built from selected features. 

The feature matching process is divided into three steps: 
First, detect keypoints in an image. Second, use feature vectors 
to descript regions around keypoints. Last, find the 
corresponding features by comparing similarities between 
descriptors. ORB is a combination of oriented FAST (oFAST) 
and rotated BRIEF (rBRIEF), it uses oFAST for keypoint 
detection and a rBRIEF as the descriptor. 

FAST is the corner detector implemented by comparing 
intensities of the centered pixel with its surrounding circular 
pixels [31]. To detect FAST features on normalized radiance 
map, we make some minor modifications, including changing 
some class declarations and data types in the source code of 
OpenCV library [32]. Fig. 3 shows the FAST feature extraction 
results of float-format normalized radiance map. 

As a descriptor, rBRIEF encodes the information around a 
keypoint into binary strings. Then, the similarity of two 
descriptors is evaluated by calculating their hamming distance. 
If the distance is smaller than a given threshold, the two 
corresponding features are seen as highly-correlated and 
matched. To generate the binary descriptor, the patch which is 
centered at a keypoint and contains 256 pairs of points is 
introduced. For each pair, if the intensity value of the first point 
in the pair is larger than the second point, the descriptor value 
would be ‘1’, otherwise be ‘0’. After that, we get a 256 binary 
string to describe the keypoint. 

In rBRIEF, the patch is trained by 300k keypoints in the 
PASCAL 2006 dataset. The training process is designed to 
learn 256 pairs from about 200k possible pairs, and ensures that 
they have the following two properties, uncorrelation and high 
variance [30]. Uncorrelation means that the difference between 
each pair should be as large as possible, thus maximizing the 
amount of information 256 pairs carries. High variance makes 

  

  
(a) (b) 

Fig. 3. FAST feature detection on (a) color images; and (b)
normalized radiance maps. 

  
(a) (b) 

Fig. 4. The descriptor patch trained by keypoints 
extracted from (a) color images; and (b) normalized 
radiance maps. 
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a feature to be more discriminative, so it can respond 
differently to different keypoints. Because the distribution of 
pairs in intensity image is supposed to be different from the one 
in normalized radiance map, we retrain the patch especially for 
normalized radiance map. First, the raw HDR images are 
collected online to generate normalized dataset. Then, about 
200k FAST features are detected in these normalized radiance 
maps. Last, the learning process is re-implemented based 
greedy algorithm following instructions in [30]. The descriptor 
patch trained by 200k HDR-keypoints is shown in Fig. 4.  

IV. EXPERIMENTAL RESULTS 

In our experiments, a small-scale dataset ‘desk’, a large-
scale dataset ‘room’, and a low-light dataset ‘stair’ recorded by 
ourselves are tested. Because CRF is dependent on specific 
camera sensor, it is required to do the calibration first for each 
depth camera. The lack of calibrated CRF of public datasets is 
the reason why we are not able to use the well-known TUM 
RGB-D datasets [33] with ground-truth trajectories to evaluate 
the HDR-based SLAM. Therefore, we record the datasets by 
ourselves with calibrated Asus Xtion and do the qualitative 
evaluation on geometric reconstructions.  

The experimental results are shown in Fig. 5. For ‘desk’ and 
‘room’ dataset, the reconstructed results of normalized 
radiance map are as good as the ones from color images. As 

shown in Fig. 6, for the low-light dataset ‘stair’, the original 
ORB-SLAM2 loses tracking at the beginning (234௧௛ frame) 
because of insufficient keypoints in RGB images. However, the 
proposed HDR-based SLAM is able to finish tracking total 
2076 frames, and use the generated camera trajectory to 
complete the reconstruction. 

V. CONCLUSIONS 

The paper proposed a 3D reconstruction system which uses 
the HDR-based SLAM to calculate accurate trajectories in 
camera estimation step. We use normalized radiance map as 
input of HDR-based SLAM to generate more representative 
features comparing to features extracted from color images, 
and to eliminate the influence of changing exposure time. To 
design the feature matching process especially for normalized 
HDR inputs, the descriptor patch has been re-trained using 
200k HDR-keypoints. The experimental results show that our 
proposed method can achieve good reconstruction performance 
of both small-scale and large-scale datasets, and can 
successfully achieve accurate camera tracking and geometric 
reconstruction under low-light environment. 

 
 
 

(a) (b) (c) (d) 
Fig. 5. The geometric reconstruction results: (a) ‘desk’ using color images; (b) ‘desk’ using color images; (c) ‘room’ using

normalized radiance maps; and (d) ‘room’ using normalized radiance maps. 
 

  

(a) (b) 
Fig. 6. For dataset ‘stair’: (a) illustration of losing tracking using color images; (b) reconstruction result with camera trajectory

calculated from proposed HDR-based SLAM. 
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