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Abstract— Anomalous event detection is advantageous for 
real-time video surveillance systems in terms of safety and 
security. Current works mostly run offline and struggle with 
abnormal event detection in crowded scenes. We propose 
unsupervised anomaly event detection using Generative 
Adversarial Network (GAN) with Optical Flow to obtain 
spatiotemporal features in appearance and motion 
representations. In training, GAN is used to train only the 
normal event images to generate their corresponding optical flow 
image. Hence, in testing, since the model knows only the normal 
patterns, any unknown events are considered as the anomaly 
event which can be detected by subtracting the pixels between 
the generated and the real optical flow images. We implement on 
the publicly available benchmark datasets and compare with 
state-of-the-art methods. Experiment results show that our 
model is effective for anomaly event detection in real-time 
surveillance videos. 

I. INTRODUCTION 

Anomaly event detection in crowded scenes has increasingly 
gained interest rates in surveillance videos for public security 
in recent years [1, 2, 3, 4, 5, 6, 7]. Even though many 
abnormality detection works have been studied, there is still 
the unsolved issues. Anomaly event detection in crowded 
scenes is very challenging because of three main causes. The 
first one is about the small samples of anomaly dataset, 
causing the lack of information for data training in deep 
learning approach which needs a lot of data to gain high 
accuracy and to implement with various recognition tasks [8, 
9, 10, 11]. The second issue is the absence of anomaly 
definition and objectives, while the third issue is about time 
complexity. Many abnormality works are suitable for offline 
use due to the high complexity system, making it incapable to 
run the system in real-time for the video surveillance system 
[12, 13, 14, 15, 16, 17, 18, 19, 20]. Moreover, these three 
issues are related to each other. The unclear of anomaly 
definition and objectives causes the difficulty of ground truth 
collection and implementation, resulting in higher costs. 

To cope with these issues, generative approaches are 
attempted to detect abnormality by generating images based 
on the learning of normal events, which are what the model 
needs at training time.  As the model knows no other patterns 
except the normal events, those other patterns are considered 
as the anomalous events. Thus, at testing time, the model is 
not able to generate abnormal patterns. Then, the anomalous 

event can be found by finding the difference from the learned 
patterns. 

However, there is a lot of research on abnormality detection 
based generative approach counting on hand-crafted features 
[2, 3, 4, 7, 14], which leads to the difficulties in adapting to 
the real-world situations due to the limitation of user-defined 
features. M. Hasan et al. [15] proposed the autoencoder deep 
learning model with two networks. Firstly, hand-crafted 
features are extracted and then put into a fully connected 
autoencoder. Following that, the fully-connected autoencoder 
learns the features as a feed-forward neural network. Xu et al. 
[16] proposed an Appearance and Motion DeepNet (AMDN) 
for video abnormality detection by using stacked denoising 
autoencoders. However, their networks rely on small patches 
of images and need to train SVMs classifier for the learned 
model additionally.  

In this paper, we propose the anomaly event detection 
based on the generative approach named Generative 
Adversarial Network (GAN) for the real-time video 
surveillance system. We aim to detect abnormality in crowded 
scenes.  Instead of using GAN to generate new images, we 
use it to learn the spatiotemporal information of the normal 
patterns in crowds to obtain both appearance and motion 
features at the training time. Hence, the model is not able to 
generate the spatiotemporal representation of the unknown 
patterns, which are anomalous events, in the testing time. This 
training of normal pattern makes it easier for the model to 
detect any possible anomalous events. The anomalous events 
can be simply detected by subtracting the local pixels between 
the generated and the real testing images. Experimental 
results on the benchmark anomaly detection datasets show 
that our proposed method performs effectively for real-time 
anomaly event detection in crowds in terms of high accuracy 
and less time consumption compared to other state-of-the-art 
methods. 

II. RELATED WORKS 

Anomaly event detection research can be divided into two 
main approaches including a traditional and a deep learning-
based method. The traditional-based method focuses on hand-
crafted features [22, 23, 24, 25] which have limitations with 
complex scenes because of the difficulty of defining specific 
parameters for any possible abnormality patterns. Apart from 
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the traditional-based method, the deep learning-based method 
is widely used and more suitable for complex scenes. It has 
been studied in [20, 21] by using CNN to train recognition 
tasks. Ravanbakhsh et al. [20] proposed a final layer called a 
Binary Quantization Layer that plugs into the top of the 
network to gather motion information of anomaly patterns. 
Xu et al. [16] proposed appearance and motion feature 
representation by adapting autoencoders. However, the 
training is quite over-fitting and complicated due to the small 
anomaly datasets and the additional one-class SVMs classifier. 

Our method is different from the methods mentioned above 
as we use only one network to focus on raw-pixels in the 
image in order to learn important features and train a 
generative network for the anomaly detection task based on 
the unsupervised deep learning method, which does not rely 
on hand-crafted features and any labeled samples. This 
unsupervised generative deep learning method learns the 
spatiotemporal features adaptively from the training data. 
Thus, it is more flexible and applicable to real-world use. We 
propose the spatiotemporal Generative Adversarial Network 
(GAN) for the detection of anomalous events in crowds. It is 
an effective approach that overcomes hand-crafted feature 
extraction and classification problems due to its outstanding 
performance [19] that can extract the significant features in 
the frames without any predefined anomaly types. In addition, 
GAN is a good approach for data augmentation and 
management because of its components, generator and 
discriminator networks, which help to prevent over-fitting and 
to train the deeper network on the end-to-end feature learning 
with small anomaly datasets. 

In particular, GANs [26, 27, 28] consists of two networks, 
generator (G) and discriminator (D). G generates a new image 
(N) from an input image (I), and D tries to discriminate I from 
N. While G tries to fool D for producing more realistic image 
frames that are difficult to be discriminated. According to 
paper [29], the proposed framework provided the 
transformation from a sketch to a real-world image based on 
the use of conditional GANs with U-Net architecture. In 
contrast, we consider the transformation from the real-world 
to the motion pattern image which is not the realistic image. 
Hence, our G is used to learn the spatial pattern and transform 
it into the temporal pattern of the normal event, called 
spatiotemporal transformation. After the training, we can 
analyze the abnormal event from the generated temporal 
pattern image. However, even GAN outperforms other state-
of-the-art methods, most of the literary works need to run 
offline to obtain good anomaly detection results. Thus, it is 
important to improve the computational cost of the 
abnormality detection system along with its accuracy for 
applying in real-time as it is a tradeoff between accuracy and 
time complexity. Our proposed method is specifically focused 
on improving the performance of abnormality detection for 
real-time surveillance videos. 

III. SPATIOTEMPORAL TRANSLATION NETWORK FOR 

NORMAL PATTERN LEARNING 

We proposed a spatiotemporal translation GAN for 
abnormality detection in crowded scenes based on the image-
to-image translation [29] which is able to model the mapping 
from the real image to the sketch image. In our proposed 
method, we map semantic spatial to temporal information by 
using the deep CNN of model G and D as shown in Fig. 1. On 
the other hand, the proposed GAN model is used to generate 
the optical flow (

tgO ) from the background removal frame 

(
tbrf ) at time t, while the ground truth of optical flow (

tr
O ) is 

obtained by using two consecutive frames in [30]. In addition, 
the G architecture comprises of Encoder (En) and Decoder 
(De) deep networks which are explained in detail in [29].   

Intuitively, the input of G is an image x and a random noise 
z. However, this proposed framework uses the Dropout 
technique in the De of G to perform as the random noise z 
described in [29]. The output of G is a reconstructed image    
g = G(x,z), which has the same dimension of the input image x 
but performs at a different channel. In detail, the input image 
of G is a background removal frame at time t (x =

tbrf ) that is 

obtained by computing the frame absolute difference between 
two consecutive frames ft–1 and ft. Then, G generates the 
output image g, which represents as the generated optical flow 
at the same time t (g =

tgO ), corresponding to the target image 

y (y =
tr

O ). For the discriminator, D takes an input frame 

including the real optical flow 
tr

O  or the generated optical 

flow
tgO to output a scalar signified the probability that the 

input frame derived from the real data.  
At the training time, G and D are implemented on two 

objective functions; a Generator Loss LL1 and a GAN Loss 
LGAN. G learns the mapping from x to y with the dropout noise z. 
Note that our network transforms only spatial to temporal data 
where the optical flow is defined by three-channel components 
including vertical direction, horizontal direction, and magnitude. 
The objective functions can be defined as below, 

 

Fig. 1.   Overview of proposed framework. 
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( ) ( ) ],[
1,,1 zxGyGL zyxL −Ε= , (1) 

( ) ( )[ ] ( )( )( )[ ]zxGDyDDGL zxyGAN ,1loglog, , −Ε+Ε= . (2) 

Finally, G is optimized as, 
  

( ) ( )GLDGLG LGAN
DG

1
* ,maxminarg λ+= . (3) 

IV. ANOMALY DETECTION 

As G is used for learning normal events in the training, it is 
used for generating the output images in the testing with the 
same configuration parameters. At testing time, G is the only 
network used for reconstructing the learned features. It is input 
by each frame of the test video sequences, containing both 
normal and abnormal events. In this case, all the unknown 
events occurred in the scene are considered as the abnormality 
due to the fact that G knows only the normal events, resulting 
in the incapability of abnormality reconstruction. Following 
that, we can simply detect the abnormal patterns by computing 
the local difference in pixels between the frames of the real 
optical flow 

tr
O  and the generated optical flow

tgO , 

represented as ∆o = 
tr

O  – 
tgO . The local difference ∆o shows 

how much these two frames are different, assuring that G is 
unable to generate the abnormality patterns.  

V. EXPERIMENTAL RESULTS 

We discuss our implementation details, datasets, evaluation 
criteria, and experimental results including time complexity 
compared with other baseline methods. The experimental 
results are evaluated on two public anomaly datasets by using 
frame-level and pixel-level evaluations as same as the original 
parameter setting [1].  

A. Implementation Details 

At training time, we set the size of the frame from the 
training video of the UCSD dataset to 256 × 256 pixels. The 
reconstruction loss LL1 is optimized until 10-3 by using Adam 
optimization. We train our model on GPU NVIDIA GeForce 
GTX 1080 Ti, 484 GB/sec bandwidth with CUDA Cores 
3584 and test on Intel Core i9-7960x CPU 2.8 GHz.  

B. Datasets 

There are two benchmark abnormality datasets used in this 
work including the UCSD dataset [3] and the UMN dataset 
[4]. The UCSD dataset is the realistic outdoor pedestrian 
scene in crowds, containing various abnormal events. It has 
two sub-folders: Ped1 and Ped2. Ped1 has 34 train and 16 test 
sequences, while Ped2 has 16 train and 12 test sequences. The 
UMN dataset contains the abnormality in crowds for both 
indoor and outdoor scenes. There are three different scenes in 
the total of 11 video sequences that contain 7,700 frames. 

 
 

C. Evaluation Criteria 

We evaluate the experimental results in both quantitative 
and qualitative results. The quantitative results of our method 
are evaluated by the frame-level and pixel-level evaluations 
and the qualitative results are visually represented in the 
standard protocol for anomaly detection as described below. 

The frame-level evaluation checks that if at least one 
predicted anomalous pixel is in the frame, then the whole 
frame is labeled as the abnormal frame. The quantitative 
experimental results for frame-level of the UCSD Ped1 and 
Ped2 compared with other state-of-the-art methods using Area 
Under Curve (AUC) and Equal Error Rate (EER) are shown 
in Tab. 1. Receiver operating characteristic (ROC) curves of 
UCSD Ped1 are shown in Fig. 2. The comparison of 
quantitative results for the UMN dataset is shown in Tab. 2.  

In contrast, the pixel-level evaluation focuses on the 
accuracy of anomaly position in the scene. This evaluation is 
challenging due to the complexity of locating abnormal areas. 
According to [1], the frame is a true positive when the true 
abnormality pixels are detected at least 40 percent over 
ground truth, otherwise it becomes a false positive.  

 
 

 

      
(a) Frame-level   (b) Pixel-level 

Fig. 2.   ROC curves for both frame-level and pixel-level evaluations of 
UCSD Ped 1  

 

 

 

 

 

 

 

 
 
 
 (a)  (b)  (c)  (d) 

Fig. 3. Abnormal event detection on UCSD dataset: (a) original frame, (b) 
background removal frame, (c) optical flow frame, (d) abnormality 

detection 
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The comparison of the quantitative results for the pixel-
level evaluation of the UCSD Ped1 dataset with state-of-the-
art methods is shown in Tab. 1. The ROC curves of the UCSD 
Ped1 dataset for the pixel-level evaluation are shown in Fig. 2. 
The quantitative results from Tab. 1 and Tab. 2 show that our 
proposed method achieves the best performance for anomaly 
event detection compared with other baseline methods.  

Fig. 3 shows the qualitative results which are demonstrated 
as the images of anomaly event detection on the UCSD 
dataset. The detection areas of abnormal events are denoted as 
red pixels based on abnormality protocol visualization. From 
Fig. 3, it is clearly shown that our proposed method detects 
abnormal events in crowds effectively. The background 
removal helps to erase all the unnecessary objects (e.g., trees, 
roads) while retaining the important features of moving 
objects in the normal event (e.g., walking people). These 
features make G know more spatial information of the normal 
events, assisting in generating its corresponding temporal 
information. Since G is not able to reconstruct the anomalous 
objects and events (e.g., people riding a bike, driving a car, 
skateboarding), its generated optical flow is simply compared 
with the real optical flow to find the difference in local pixels.  

In terms of the running time processing in frames per 
second (fps), we obtain 11.6 fps and 11.32 fps on the CPU for 
the UCSD Ped1 and Ped2, respectively. We compare our 
average running time processing in seconds per frame with 
other state-of-the-art methods as shown in Tab. 3. From Tab. 
1, 2 and 3, our proposed method outperforms other state-of-
the-art methods in both accuracy and running time aspects 
except for the running time in [5]. However, we achieve the 
lowest EER and the highest AUC compared with all state-of-
the-art methods as shown in Tab. 1 and 2. According to our 
experimental results, our proposed method is suitable to apply 
with the real-time surveillance videos in crowds as it can 
effectively detect abnormal events with high-speed processing. 

VI. CONCLUSIONS 

In conclusion, we proposed an unsupervised spatiotemporal 
translation GAN network for real-time anomaly event 
detection in crowds. We aimed to increase the speed of 
anomaly detection and reduce system complexity. Our 
network is designed for learning both spatial and temporal 
features in its simplicity. As we train our network with only 
normal frames from the train video sequences of anomaly 
datasets, the network is not able to reconstruct the 
abnormality. So that at the testing time, the possible abnormal 
events are simply detected by computing the difference in 
pixels between the real and the generated motion frames. We 
implemented on two benchmark anomaly datasets. The 
experimental results show that our proposed method 
overcomes other state-of-the-art methods, considering both 
accuracy and time complexity. It can be applied in the 
realistic crowded scenes for real-time surveillance videos. For 
the future work, we will focus more on improving the 
accuracy of the anomaly event localization at the pixel-level 
evaluation. 
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