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Abstract—In this paper, we propose a voice activity detection
(VAD) system, which combines a convolutional recurrent neural
network (CRNN) and a recurrent neural network (RNN). In
order to improve the performance of our system in low signal-
noise ratio conditions, we also add a speech-enhancement module,
a one-dimensional dilation-erosion module, and a model ensemble
module, all of which contribute significantly. We evaluate our
proposed system on development dataset of Public Safety Com-
munications (PSC) and Video Annotation for Speech Technolo-
gies (VAST) from NIST Open Speech Analytic Technologies 2019
(OpenSAT19). Compared to the baseline system, our proposed
system achieves better performance, using OpenSAT19 official
evaluation metrics.

Index Terms—Voice activity detection, RNN, CRNN, speech-
enhancement, one-dimensional dilation-erosion, OpenSAT19

I. INTRODUCTION

Voice activity detection (VAD) is now one of the most
essential research area, since it is a front-end and contributes
in a large number of domains, such as automatic speech
recognition, keyword search, speech enhancement, speaker
recognition and so on. Traditional approaches of VAD are
based on energy spectrum, frequency spectrum, cepstrum,
harmonic wave feature, or long-term information. Recently,
with significant success and extensive application of deep
learning in computer vision and natural language processing,
people started to utilize neural networks in VAD. Such as
deep belief networks based VAD [1], deep multimodal end-to-
end architecture [2] based on both visual network and audio
network, diffusion nets based network towards transient noise
[3], and frequency-dependent kernel and DIP-based clustering
for unsupervised VAD [4].

The National Institute of Standards and Technology (NIST)
OpenSAT 2019 is a continuation of the OpenSAT Evaluation
Series that started with the 2017 Pilot and organized by NIST.
It is planned to have three speech analytics tasks: Speech
Activity Detection (SAD), Key Word Search (KWS), and
Automatic Speech Recognition (ASR). There are three data
domains planned in OpenSAT19: Public Safety Communi-
cations (PSC), Video Annotation for Speech Technologies
(VAST), and Low Resourced Language (LRL). Our proposed
system aims at SAD task in PSC and VAST domains [5].
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In our paper, we propose a neural network architecture for
voice activity detection in low signal-noise ratio situation.
Firstly, we extract the log Mel-scale Filter Bank energies
(fbank) feature of each frame of the audio. Then we train a
convolutional recurrent neural network (CRNN) and a recur-
rent neural network (RNN) that output whether there exists
speech in every frame. We also add a speech-enhancement
module, a one-dimensional dilation-erosion module, and a
model ensemble module to our system, which greatly improve
the final performance.

We evaluate our proposed system on dataset of PSC and
VAST [6], both from NIST Open Speech Analytic Technolo-
gies 2019 (OpenSAT19). Our evaluation metrics are false pos-
itive rate (PFP), false negative rate (PFN) and detection cost
function value (DCF (θ)). A false positive (FP) is detecting
speech where there is no speech, also called a “false alarm”.
A false negative (FN) is missed detection of speech, i.e., not
detecting speech where there is speech, also called a “miss”.
The DCF (θ) is the detection cost function value for a system
at a given system decision-threshold setting. The evaluation
metrics mentioned above are computed as follows:

PFP =
total FP time

annotated total nonspeech time
(1)

PFN =
total FN time

annotated total speech time
(2)

DCF (θ) = 0.75× PFN + 0.25× PFP (3)

where θ denotes a given system decision-threshold setting. Our
goal is to minimize the DCF (θ) in (3).

The rest of this paper is organized as follows. In section
II, we introduce our methods in detail, mainly including
system overview, feature extraction, neural network, speech-
enhancement, one-dimensional dilation-erosion algorithm, and
model ensemble. The dataset, experiments and results are
presented in section III. Finally, we conclude our work in
section IV.

II. METHODS

A. System Overview

Our proposed system is shown in Fig.1. Firstly, input
audios are enhanced by speech-enhancement module. Next, we
extract fbank features of raw audios and enhanced audios, and
then put the features into both a convolutional recurrent neural
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Fig. 1. Overall architecture of proposed system.

network (CRNN) and a recurrent neural network (RNN). The
two networks will output speech existence in every frame
separately. Finally, we pass the output to the model ensemble
module and one-dimensional dilation-erosion module and get
the final output.

B. Feature Extraction

In this part of the system, we follow the work in [7]. To
imitate non-linear response to the sound spectrum of human
ear, we choose the log Mel-scale Filter Bank energies (fbank)
feature. First, we convert sampling rate of input audios to 16
kHz, and divide each audio into frames. The frame length is 20
ms and the frame shift is 10 ms. Then we extract fbank feature
of each frame, applying 40 mel-scale filters on the magnitude
spectrum, which cover the entire range from 0 to 8000 Hz.
After that, we take logarithm on the amplitude and then get
the fbank feature. Finally, in order to be prepared to be fed
into neural networks, the extracted feature is normalized to
zero mean and unit standard deviation.

C. Neural Network

In this part of our proposed system, we train two different
neural networks, a CRNN and an RNN. Both networks are
shown in Fig.2. We cut input feature into 64-frame length
segments, so the input shape is 64×40. In CRNN structure,
the first two layers are 2-dimensional convolution (Conv-
2D) layers, and the next two layers are bi-directional gated
recurrent unit (bi-GRU) layers. The final layer is a fully-
connected layer, which outputs whether speech exists in each
frame. In RNN structure, there are 4 bi-GRU layers after the
input layer, and the final layer is a fully-connected layer, which
outputs whether speech exists in each frame.

D. Speech-Enhancement

In this module, our work is based on a regression approach
to speech enhancement based on deep neural networks (DNN)
[8]. To train the speech-enhancement model, we utilize the
same datasets, the same neural network, and the same training
method mentioned or provided in [8]. We add noise audio
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Fig. 2. The architecture of CRNN and RNN.

to clean speech audio and get noisy speech. Then both noisy
speech and clean speech are fed into the DNN as input and out-
put of the network separately. In this way, we get a DNN based
speech-enhancement module. We also listen to the output of
the module, and although the speech enhancement results don’t
sound perfect, it does improve the VAD performance.

E. One-Dimensional Dilation-Erosion

Due to the defect of speech-enhancement, speech is in-
evitably weakened when background noise is reduced. There-
fore, some “holes” that appear in speech segments in output
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need to be patched, and some boundaries need to be expanded.
The dilation-erosion algorithm is widely used in computer
vision area, which means dilating or eroding white area on
binary image. In our system output, each audio is divided
into several segments marked speech or nonspeech, and this is
just like a one-dimensional binary image. Therefore, our one-
dimensional dilation-erosion algorithm is dilating or eroding
speech segments of output. The specific algorithm is imple-
mented as Algorithm 1.

Algorithm 1 One-Dimensional Dilation-Erosion Algorithm
Input: mode, bias

for all segment do
if mode = dilation then

if segment state = speech then
segment start time ⇐ segment start time −
bias
segment end time⇐ segment end time+ bias

else
// segment state = nonspeech
segment start time ⇐ segment start time +
bias
segment end time⇐ segment end time− bias

end if
else
// mode = erosion
if segment state = speech then
segment start time ⇐ segment start time +
bias
segment end time⇐ segment end time− bias

else
// segment state = nonspeech
segment start time ⇐ segment start time −
bias
segment end time⇐ segment end time+ bias

end if
end if

end for
for all segment do

if segment start time > segment end time then
delete segment

end if
end for

F. Model Ensemble
In order to get better performance, we add model ensemble

module to our proposed VAD system, a commonly applied
strategy. We choose the BUT phoneme recognizer [9] as
our ensemble model, which is also our baseline system. The
method for model ensemble is WCombSum algorithm [10]
used in keyword search (KWS) area. WCombSum is computed
as follows:

s =
N∑
i=1

wi × si (4)

where wi denotes weight of each system, and si denotes
confidence score for each system. We normalize the output
of each system into a range of 0 to 1, so that we can find
the optimal threshold θ within a certain range to minimize the
DCF (θ).

III. EXPERIMENTS AND RESULTS

A. Dataset

We use a total of four datasets, PSC training data set
(PSC train), PSC development data set (PSC dev), VAST
development data set in 2017 (17VAST dev), and VAST
development data set (VAST dev), three of them provided in
OpenSAT19 and one provided in OpenSAT17. Each dataset
mentioned above has its own transcripts. There are 131.2
hours of audio in PSC train set, 5 hours in PSC dev, 13.3
hours in 17VAST dev, and 13.5 hours in VAST dev, including
speeches with no background, quiet background, loud back-
ground or babble.

B. Experiment

We choose PSC train set as our training set, and PSC dev
set as well as VAST dev set as our test set.

During the training phase, we feed acoustic feature and
transcripts of PSC train set into our CRNN and RNN models.
Batch normalization [11] and dropout [12] are used in training
phase, which are not shown in Fig.2. Our models are trained
using Adam optimizer [13], with initial learning rate 0.001.
Binary cross-entropy is used as the loss function and the
batch size is 256. We randomly select 20% of training set as
validation set. The training will be stopped after 100 epochs,
and we also use early stopping strategy when the validation
loss stops degrading for 10 epochs. Our evaluation metric is
the DCF (θ) mentioned in section I.

When it comes to the test phase, we put the audio in
test set into speech enhancement module, and get enhanced
audio. Features of both raw audio and enhanced audio are put
into our trained models. The outputs of neural networks and
BUT phoneme recognizer will pass model ensemble module
and one-dimensional dilation-erosion module. In the end, we
get the final output of our proposed system. We evaluate the
system using the DCF (θ), with a collar of 500 ms between
each speech and nonspeech.

Additionally, we also feed audio feature and transcripts of
17VAST dev set into our neural networks when evaluating
the performance in VAST dev set. This does work effectively,
because the 17VAST dev set can supplement the noise in-
formation of the VAST set, which is not available in the PSC
set. Noticing the data imbalance in VAST set, we use weighted
cross-entropy loss function computed as follows:

Loss = − 1

N

∑
wS ŷt log(yt) +wN (1− ŷt) log(1− yt) (5)

where yt denotes the output of each frame, ŷt denotes the
ground-truth label, and wS and wN denote the weights of
speech and nonspeech frames, respectively.
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TABLE I
PERFORMANCE OF SPEECH-ENHANCEMENT MODULE AND ONE-DIMENSIONAL DILATION-EROSION MODULE. *** INDICATES THAT THE

CORRESPONDING RESULT IS NOT AVAILABLE AND – INDICATES THAT THE CORRESPONDING RESULT IS MEANINGLESS. (1)OFFICIAL BASELINE:
BASELINE OUTPUT PROVIDED BY OPENSAT17; (2)RAW: BUT; (3)RAW DE: BUT WITH ONE-DIMENSIONAL DILATION-EROSION; (4)SE: BUT WITH

SPEECH-ENHANCEMENT; (5)SE DE: BUT WITH SPEECH-ENHANCEMENT AND ONE-DIMENSIONAL DILATION-EROSION.

system
PSC dev VAST dev 17VAST dev

PFN PFP DCF PFN PFP DCF PFN PFP DCF Relative Improvement(%)
Official Baseline *** *** *** *** *** *** 0.3606 0.0726 0.2886 –

Raw 0.0735 0.7442 0.2412 0.0533 0.7609 0.2302 0.0199 0.8070 0.2167 24.9
Raw DE 0.0058 0.8507 0.217 0.0011 0.8570 0.2150 0.0005 0.8646 0.2165 25.0

SE 0.1897 0.4825 0.2629 0.2311 0.4273 0.2802 0.1514 0.5009 0.2388 17.2
SE DE 0.0216 0.6169 0.1705 0.0258 0.6252 0.1757 0.0190 0.6887 0.1864 35.4

C. Results

Tab.I shows the performance of speech-enhancement mod-
ule and one-dimensional dilation-erosion module. Note that the
official baseline is provided in OpenSAT17, actually not our
baseline. As shown in Tab.I, compared to using BUT phoneme
recognizer simply, utilizing both our speech-enhancement and
one-dimensional dilation-erosion algorithm will reduce the
DCF (θ) by 0.0707, 0.0545, and 0.0303, relatively improving
29.3%, 23.6%, and 14.0% in three data sets, respectively.

TABLE II
PERFORMANCE OF OUR PROPOSED SYSTEM, * INDICATES THE SYSTEM

USING SPEECH-ENHANCEMENT MODULE AND ONE-DIMENSIONAL
DILATION-EROSION MODULE

system
PSC dev VAST dev

PFN PFP DCF PFN PFP DCF

BUT 0.0735 0.7442 0.2412 0.0533 0.7609 0.2302
BUT* 0.0216 0.6169 0.1705 0.0258 0.6252 0.1757
CRNN 0.0998 0.3585 0.1644 0.0805 0.3399 0.1453
CRNN* 0.0789 0.2651 0.1255 0.0517 0.1997 0.0887

RNN 0.1199 0.2880 0.1619 0.0863 0.3164 0.1438
RNN* 0.0808 0.1889 0.1078 0.0835 0.1720 0.1056

Ensemble 0.1498 0.1063 0.1389 0.0643 0.3437 0.1342
Proposed 0.0604 0.0472 0.0571 0.0481 0.1944 0.0846

The final performance in PSC dev set and VAST dev set of
our proposed system is shown in Tab.II. Finally, our system
achieves the lowest DCF (θ) both in PSC dev set (0.0571)
and VAST dev set (0.0846), outperforming other methods.
Compared to baseline performance, we get a 76.3% and
a 63.2% improvement in PSC dev set and VAST dev set,
respectively. Although not tested in the same datasets, our
proposed system achieves comparable performance to the top
systems in OpenSAT17 [14].

IV. CONCLUSIONS

In this paper, we have introduced an RNN and CRNN
based approach to robust voice activity detection. To be more
specific, we combine a CRNN model and an RNN model, and
then add a speech-enhancement module, a one-dimensional
dilation-erosion module, and a model ensemble module. Ex-
perimental results show that all of the modules contribute sig-
nificantly, with PFP, PFN and DCF (θ) decreased evidently.

Compared to the baseline system, our proposed system out-
performs greatly and achieves comparable performance to the
top systems in OpenSAT17. We believe the proposed system
will become a helpful front-end of ASR and KWS systems,
and will contribute in various domains. As for performance in
other datasets, more future work needs to be done for futher
evaluation.
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