
A Simple Gaussian Kernel Classifier with
Automated Hyperparameter Tuning

Kosuke Fukumori and Toshihisa Tanaka
Department of Electrical and Electronic Engineering,

Tokyo University of Agriculture and Technology, Tokyo, Japan
E-mail: fukumori17@sip.tuat.ac.jp, tanakat@cc.tuat.ac.jp Tel/Fax: +81-42-388-7123

Abstract—This paper establishes a fitting method for a kernel
logistic regression model that uses generalized Gaussian kernel
and its parameter optimization method. Kernel logistic regression
is a classification model that uses kernel methods effectively.
This is one of the methods to construct an effective non-
linear system with a reproducing kernel Hilbert space (RKHS)
induced from positive semi-definite kernels. Most classifiers that
are combined with Gaussian kernel functions generally assume
uncorrelatedness within the feature vectors. Thus, the Gaussian
kernel consists of only two parameters (namely, mean and
precision). In this paper, we propose a model using a generalized
Gaussian kernel represented flexibly in each dimension of feature
vector. In addition, the parameters of kernel are fully data-
driven. For the fitting of proposed model, an ℓ1-regularization is
introduced to supress the number of support vectors. A numerical
experiment showed that the classification performance of the
proposed model is almost the same as RBF-SVM even though
the proposed model has a small number of support vectors.

I. INTRODUCTION

Deep learning (DL) shifted the paradigm of machine learn-
ing and artificial intelligence. A large number of layers with
neurons can efficiently fit the data to extract features [1]. Thus,
it is crucial to collect a large amount of data (“big data”) to
train millions of neurons to design an efficient network [2], [3].
In particular, for supervised learning, the big data should be
always together with the label corresponding to each sample.
Besides, high performance computing is a key technology to
train such a large model of network. In practice, such an
ideal situation is very limited. Many types of real-world data,
such as medical data, environmental data, etc., cannot be big
data [4], [5]. Sometimes they do not have enough labels,
and sometimes they are not well formatted. Thus, it is still
important to develop efficient methods of supervised learning
for non-big data (“small data”).

A well-established traditional approach to small data is
support vector machine (SVM) [6]. The SVM cannot perform
feature extraction by itself, but it is known that it works
very efficiently with small data. A potential advantage of the
kernel method is that the linear method can be applied directly
to the nonlinear mapping of the feature vectors. Therefore,
although the inner product on the high-dimension space to
which this mapping belongs can not be calculated explicitly,
it can be calculated using a kernel function by converting a
high-dimension space to a reproducing kernel Hilbert space
(RKHS). Thanks to the kernel method, SVM can achieve
high estimation performance by expressing ability of nonlinear

identification boundary and generalization ability based on
geometry margin maximization [6], [7], [8].

Selection of kernel parameters is one of the important issues
for generalization ability [9], [10]. The Gaussian kernel is
widely used as a powerful kernel function for kernel classifiers
[11]. Typically, the Gaussian kernel has two parameters: mean
(vector) and precision (scalar). This means that the model
assumes that the feature vectors are uncorrelatd. This is a
strong assumption, because the observed samples are often
correlated.

In this paper, we propose to use the generalized Gaussian
function with hyperparameters of the mean vector and pre-
cision matrix as a kernel function. Adoping kernel logistic
regression (KLR) with ℓ1-regularizatoin, we establish fully
data-driven estimation methods for the hyperparameters. The
underlying idea behind the use of KLR is its differentiability
of the cost function. This enables us to develop a Riemannian
geometry-based gradient method to estimate the hyperparam-
eters. Moreover, because of the ℓ1-regularization, the model
can prevent overfitting and supress the number of samples in
the memory. Numerical experiments support the efficacy of
the proposed method. For the experiment, we use 16 datasets
of binary classification published on UCI Machine Learning
Repository [12]. We verify the effectiveness of the proposed
kernel optimization method by comparing the classification
performance of SVM and the proposed method.

II. KERNEL LOGISTIC REGRESSION AND SUPPORT
VECTORS

Kernel Logistic Regression is a powerful and flexible non-
linear classification model which has discrimination perfor-
mance equivalent to ohter traditional classifiers [13], [14].
KLR has advantages that it provides the posterior probability
of the class and it is easy to differentiate the cost function.
Here, we introduce KLR and a construction method of its
support vectors using ℓ1-regularization to propose our method.
The symbols of definition which used in this paper are shown
in Table I.

A. Kernel logistic regression in RKHS

KLR is an extended model of logistic regression (LR)
that can solve nonlinear classification problem by the kernel
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method [15], [16]. LR and KLR provide the posterior proba-
bility by the sigmoid function:

ϕ(f(x))=
1

1+exp(−f(x))
(1)

as an activation function, where f(x) is an inner product of
the feature vector x and the weight vector w when build a
model as LR, given as:

f(x)=w⊤x. (2)

On the other hand, when build a model as KLR, let the f(x) be
the elements in RKHS. By introducing the representer theorem
[15], f(x) is given as:

f(x)=
N∑
i=1

h(i)K
(
x,x(i)

)
. (3)

Therefore, the probability P (y=0|x) and P (y=1|x) that the
feature vector x is classified to the class label y=0/1 are
obtained as:

P (y=0|x)= 1

1+exp(−f(x))
, (4)

P (y=1|x)=1−P (y=0|x)

=
exp(−f(x))

1+exp(−f(x))
. (5)

In this paper, to apply KLR as a classifier, we define the
following classification rule:

ŷ=argmax
l∈{0,1}

P (y=l|x). (6)

By Eq. (6), KLR can predict the two values in the binary
classification.

For the fitting of KLR, cross-entropy which is the log-
likelihood of the Bernoulli distribution is employed as cost
function:

J=− 1

N

N∑
i=1

[
y(i)log(ϕ(f(x)))

+(1−y(i))log(1−ϕ(f(x)))
]
. (7)

Then, update the parameters to minimize this function. This
is a minimization problem of the cost function with the kernel
coefficient h as the explanatory variable [17].

B. Construction method of support vectors using ℓ1-
regularization

As shown in Eq. (3), the f(x) is the sum of the kernel
functions determined by the feature vectors of all the training
data. This means that the higher the number N of training
set is, the higher the computational cost is. One method
to solve this problem is to construct a sparse model by
removing unimportant kernel functions. In this section, the
kernel functions that construct the model are called support
vectors, and we describe a method to build a sparse model
using ℓ1-regularization.

TABLE I
DEFINITIONS OF SYMBOLS

N Number of training set
i Index for element of training set
j Index for element of support vectors that constitute a

model
k Number of current learning iteration
x∈Rm m-dimensional feature vector
y∈{0,1} True value of the class label to which the feature vector

x belongs
ŷ∈{0,1} Predicted value of the class label to which the feature

vector x belongs
f(·) Sum of an weighted feature vector or weighted kernel

outputs
h Kernel coefficient
ϕ(·) Activation function
K(·,x) Kernel function

The set of support vectors is a set of kernel functions
represented by

{
K(·,x(j))

}
j∈J , where J :={j1,j2,...,jr}⊂

{0,1,...,N−1} is the index of the support vectors. Here, we
adopt an ℓ1-regularization term into the cost function for
updating of the kernel coefficient h. By the ℓ1-regularization,
the cost function Jℓ1 is given as:

Jℓ1=J+λ
∑
j∈J

∣∣∣h(j)∣∣∣, (8)

where λ is the regularization parameter. Since Eq. (8) is a
non-convex function, the foward-backward splitting method
(FOBOS) [18] is employed to minimizing this function. Thus,
the update rule is given as:

h
(j)
k+1=sign

(
α
(j)
k

)[∣∣∣α(j)
k

∣∣∣−ληh]
+
, (9)

where
α
(j)
k =h

(j)
k −ηh

∂J(h)

∂h

∣∣∣∣
h=h

(j)
k

,

ηh is a step size for the kernel coefficient h and k is a number
of the current fitting step. After the updating of h, K(·,x(j))

is removed from the set of support vectors if h(j)k+1=0.

III. KLR FITTING USIGN GENERALIZED GAUSSIAN
KERNEL

Most classifiers that are combined with Gaussian kernel
functions generally assume uncorrelatedness within the feature
vectors. Thus, the Gaussian kernel consists of only two param-
eters (namely, mean and precision). In this section, we propose
a kernel logistic regression (KLR) model using a generalized
Gaussian kernel function expressed as:

K(·, c; Λ)=exp
(
−(·−c)⊤Λ(·−c)

)
, (10)

where Λ∈Rm×m is an inverse covariance matrix, which is
called the precision matrix, and c is called the mean of
the Gaussian kernel function. Then, we establish a method
to optimize both the precisions and the means at fitting
the proposed KLR model. When the update of the kernel
coefficients, the proposed method simultaneously update the
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precisions and the means to increase the generalization ability.
In addition, an ℓ1-regularization is employed to reduce the
support vectors.

In the proposed fitting method, the kernel parameters are
defined as variables and updated every the k-th fitting step.
Therefore, the sum of kernel functions f(x) is given as:

f(x)=
∑
j∈J

h(j)K
(
x, x(j); Λ

(j)
k

)
=
∑
j∈J

h(j)exp
(
−(x−c(j)k )⊤Λ

(j)
k (x−c(j)k )

)
, (11)

where Λ
(j)
k and c(j)k are the kernel precision and mean at k-th

step, respectively.

A. Updating the kernel precision matrices

The kernel precision Λ must be a symmetric positive
definite (SPD) matrix, which is denoted by Rm×m. In order to
update these matrices while preserveing the SPD condition, we
consider to employ the matrix exponentiated gradient (MEG)
update [19] given as:

Λ
(j)
k+1

=exp

(
logΛ

(j)
k −ηΛsym

(
∂J(Λ)

∂Λ

∣∣∣∣
Λ=Λ

(j)
k

))
, (12)

where ηΛ a step size for Λ and sym(X):=(X+X⊤)/2
denotes the symmetrization for X . However, the computation
of logΛ(j)

k might be unstable when the eigenvalues of Λ(j)
k is

very small. To avoid this possibility of becoming unstable, the
proposed method normalizes Λ by the following function:

L
(j)
k (Λ)=Λ

(j)
k

−1/2
ΛΛ

(j)
k

−1/2
, (13)

where Λk is a current matrix at the k-th step and is unchanged
at this update time. For notational simplicity, we define the nor-

malized Λ by Eq. (13) as Λ′:=L
(j)
k (Λ)=Λ

(j)
k

−1/2
ΛΛ

(j)
k

−1/2
.

This implies Λ=Λ
(j)
k

1/2
L
(j)
k (Λ)Λ

(j)
k

1/2
.

After the normalization by Eq. (13), the update rule for Λ′

based on Eq. (12) can be written as:

Λ
′(j)
k+1

=exp

(
logΛ

′(j)
k −ηΛ′sym

(
∂J(Λ(Λ′))

∂Λ′

∣∣∣∣∣
Λ=Λ

(j)
k

))

=exp

(
log
(
Λ

(j)
k

−1/2
Λ

(j)
k Λ

(j)
k

−1/2)
︸ ︷︷ ︸

=logI=0

−ηΛ′sym
( ∂J(Λ(Λ′))

∂Λ′

∣∣∣∣
Λ=Λ

(j)
k

))

=exp

(
−ηΛ′sym

( ∂J(Λ(Λ′))

∂Λ′

∣∣∣∣
Λ=Λ

(j)
k

))
, (14)

where I∈Rm×m is an identity matrix and

∂J(Λ(Λ′))

∂Λ′ =

(
Λk

1/2

(
∂J(Λ)

∂Λ

)⊤

Λk
1/2

)⊤

=Λk
1/2 ∂J(Λ)

∂Λ
Λk

1/2. (15)

Thus, we get the update rule for Λ as:

Λ
(j)
k+1=Λ

(j)
k

1/2
Λ

′(j)
k+1Λ

(j)
k

1/2

=Λ
(j)
k

1/2
exp

(

−ηΛ′Λ
(j)
k

1/2
sym

(
∂J(Λ)

∂Λ

∣∣∣∣
Λ=Λ

(j)
k

)
Λ

(j)
k

1/2

)
Λ

(j)
k

1/2
, (16)

where

∂J(Λ)

∂Λ

∣∣∣∣
Λ=Λ

(j)
k

=
N−1∑
i=0

{[
y(i)−ϕ

(
f(x(i))

)]
h
(j)
k K(x

(i),c
(j)
k ;Λ

(j)
k )

(x(i)−c(j)k )(x(i)−c(j)k )⊤

}
. (17)

B. Updating the kernel means

For the updating of the kernel mean, we apply the steepest
descent (SD) method [20] so that the cost function Eq. (7) is
minimized. Therefore, the update rule can be obtained as:

c
(j)
k+1=c

(j)
k −ηc

∂J(c)

∂c

∣∣∣∣
c=c

(j)
k

, (18)

where

∂J(c)

∂c

∣∣∣∣
c=c

(j)
k

=
2

N

N−1∑
i=0

{[
y(i)−ϕ

(
f(x(i))

)]
h
(j)
k K(x

(i),c
(j)
k ;Λ

(j)
k )

Λ
(j)
k (x(i)−c(j)k )

}
, (19)

and ηc is a step for c.

C. Fitting the coefficients combined with the kernel parame-
ters updating

As the first step of the model fitting, the support vectors of
the proposed method are initialized by using the training set
as:

K
(
·,c(j)0 ;Λ

(j)
0

)
j∈J0

=K
(
·,x(j);I

)
j∈J0

, (20)
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Algorithm 1 Model fitting of the KLR-SPD

Input: Training set {(x(i),y(i))}i∈{0,1,···,N−1}
// definition
ℓ1-regularization parameter λ;
Learning rate for coefficient ηh;
Learning rate for kernel precision ηΛ;
Learning rate for kernel mean ηc;
Number of maximum learning epoch kmax;
// Initialization
J0←{0,1,···,N−1};{
c
(j)
0

}
j∈J0

←{x(i)}i={0,1,···,N−1};{
Λ

(j)
0

}
j∈J0

←{I,···,I};

// Fitting
k←0
while k ̸=kmax do

Update
{
Λ

(j)
k

}
j∈Jk

to
{
Λ

(j)
k+1

}
j∈Jk

by (16);

Update
{
c
(j)
k

}
j∈Jk

to
{
c
(j)
k+1

}
j∈Jk

by (18);

Update
{
h
(j)
k

}
j∈Jk

to
{
h
(j)
k+1

}
j∈Jk

by (21);

Jk+1←{};
for j∗∈Jk do

if h(j
∗)

k+1=0 then
Remove Λ

(j∗)
k+1 from

{
Λ

(j)
k+1

}
j∈Jk

;

Remove c(j
∗)

k+1 from
{
c
(j)
k+1

}
j∈Jk

;

Remove h(j
∗)

k+1 from
{
h
(j)
k+1

}
j∈Jk

;

else
Jk+1←Jk+1∪{|Jk+1|};

end if
end for
k←k+1;

end while
Output: Support vectors {K(·,c(j);Λ(j))}j∈Jk−1

and corre-
sponding coefficients {h(j)}j∈Jk−1

where

J0={0,1,...,N−1}.

Then, the kernel coefficient update method with the ℓ1-
regularization described in II-B is applied as follows:

h
(j)
k+1=sign

(
α
(j)
k

)[∣∣∣α(j)
k

∣∣∣−ληh]
+
, (21)

TABLE II
THE LIST OF DATASETS FOR THE EXPERIMENT

Dataset features samples ratio of labels
Australian Credit Approval 14 690 383:307
Breast Cancer Wisconsin 9 683 444:239
Climate Model Simulation
Crashes

18 540 46:494

Cryotherapy [21], [22] 6 90 42:48
Diabetic Retinopathy Debre-
cen

19 1151 540:611

Fertility (fertility) 9 100 88:12:00
German Credit Data 24 1000 700:300
Haberman’s Survival 3 306 225:81
Heart 13 270 150:120
Immunotherapy [21], [22] 7 90 19:71
MONK’s-1 6 432 216:216
MONK’s-2 6 432 290:142
MONK’s-3 6 432 204:228
Parkinsons 22 195 48:147
Sonar, Mines vs. Rocks 60 208 97:111
SPECTF Heart 44 267 55:213

where

α
(j)
k =h

(j)
k −ηh

∂J(h)

∂h

∣∣∣∣
h=h

(j)
k

=h
(j)
k −ηh

1

N

N−1∑
i=0

[
y(i)−ϕ

(
f
(
x(i)

))]
K
(
x(i),c

(j)
k ;Λ

(j)
k

)
.

At this update step, the update methods for the parameters
described in III-A and III-B are combined into the fitting of
KLR. By using the ℓ1-regularization and the optimization of
the kernel parameters, the number of support vectors can be
reduced. The KLR which is applied these update methods is
named KLR-SPD. Algorithm 1 describes the pseudocode of
KLR-SPD.

IV. NUMERICAL EXPERIMENTS

We compare the proposed KLR-SPD, the RBF-SVM [6]
and the LR [23] with employ an ℓ2-regularization. In this
numerical experiment, 16 datasets published on UCI Machine
Learning Repository [12] are employed to perform the binary
classifications. Each dataset is randomly divided into two equal
sets, the one of them is used for model fitting as a trainset and
the rest is used for model evaluation as a testset. At the model
fitting of RBF-SVM or LR, the Gaussian kernel parameter γ
and the trade-off parameter C in the RBF-SVM and the ℓ2-
regularization parameter in LR are respectively choosed over
the range of {0.0001,0.001,0.01,0.1,1,10} by grid search. For
adjusting the grid search, the five-fold cross validation with
two subsets is used. One subset is used for validation and the
other subset is used for model training. On the other hand, the
proposed KLR-SPD does not require semi-manual parameter
tuning such as grid search.

For the evaluation, we adopt a mean accuracy and a mean
sparsity by taking an average over 10 independent realizations.
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TABLE III
ACCURACIES AND SPARSITIES OF (MEAN ± STD.) OF EACH COMPARED MODEL. THE BEST ACCURACIES AND SPARSITIES ARE HIGHLIGHTED.

Accuracy ± STD. Sparsity ± STD.
Dataset KLR-SPD RBF-SVM LR KLR-SPD RBF-SVM
Australian Credit Approval 0.872±0.00284 0.840±0.0179 0.747±0.0746 0.633±0.0739 0.341±0.146
Breast Cancer Wisconsin 0.968±0.00388 0.965±0.00745 0.970±0.0108 0.646±0.00858 0.790±0.0972
Climate Model Simulation Crashes 0.927±0.00718 0.950±0.0159 0.917±0.0131 0.798±0.0144 0.763±0.105
Cryotherapy 0.73±0.026 0.86±0.043 0.57±0.12 0.33±0.060 0.50±0.086
Diabetic Retinopathy Debrecen 0.605±0.0141 0.701±0.0202 0.532±0.0122 0.940±0.00701 0.315±0.0147
Fertility 0.88±0.020 0.87±0.020 0.87±0.020 0.40±0.051 0.22±0.041
German Credit Data 0.714±0.00849 0.749±0.0145 0.700±0.0166 0.915±0.0107 0.409±0.0306
Haberman’s Survival 0.762±0.0114 0.734±0.0319 0.737±0.0312 0.852±0.0213 0.445±0.0780
Heart 0.824±0.0217 0.822±0.0254 0.619±0.139 0.462±0.0654 0.470±0.0727
Immunotherapy 0.82±0.020 0.79±0.045 0.80±0.033 0.42±0.088 0.49±0.11
MONK’s-1 0.85±0.012 0.89±0.025 0.75±0.018 0.50±0.060 0.39±0.24
MONK’s-2 0.710±0.0335 0.803±0.0669 0.536±0.0509 0.646±0.0565 0.251±0.184
MONK’s-3 0.628±0.110 0.828±0.0251 0.800±0.0245 0.973±0.0147 0.193±0.211
Parkinsons 0.816±0.0174 0.791±0.0269 0.796±0.0254 0.809±0.0400 0.491±0.107
Sonar, Mines vs. Rocks 0.770±0.0119 0.768±0.0251 0.754±0.0162 0.870±0.0295 0.499±0.0214
SPECTF Heart 0.677±0.0115 0.757±0.0235 0.663±0.0178 0.852±0.0217 0.215±0.215
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Fig. 1. Accuracies and sparsities shown in Table III are displayed as bar graphs. And STDs are indicated by error bars.

The accuracy and the sparsity are calculated by:

Accuracy=
ncorrect
Ntest

, (22)

Sparsity=1−nsup
N

, (23)

where ncorrect, Ntest and nsup are a number of correct
predictions, a number of test set and a number of support
vectors, respectively.

The results of experiment are shown in Table III and Fig. 1.
From Table III and Fig. 1(a), it can be seen that the accuracies
of the KLR-SPD achieved almost comparable accuracies to
the RBF-SVM, which had parameter tuning using grid search.
However, in most cases, the sparsities of the KLR-SPD are
higher than the other mothods as confirmed in Table III and
Fig. 1(b). In other words, the KLR-SPD showed almost the
same classification performance as RBF-SVM with a small

number of support vectors.

V. CONCLUSION

We proposed a flexible fitting method that optimize the ker-
nel parameters to apply the binary classifier. The our proposed
method is applied to kernel logistic regression, then the model
parameters include kernel parameters are fully data-driven.
Especially, thanks to employ the generalized Gaussian kernel
and its data-driven optimization, it can be conceivable that the
feature vectors are projected flexibly. In addition, it is possible
to constitute a sparse model by using the ℓ1-regularization.
The proposed method demonstrated its effectiveness by the
numerical experiment.
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