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Abstract—Heterogeneous networks (HetNets) have been re-
garded as the key technology for fifth generation (5G) com-
munications to support the explosive growth of mobile traffics.
By deploying small-cells within the macrocells, the HetNets can
boost the network capacity and support more users especially
in the hotspot and indoor areas. Nonetheless, resource man-
agement for such networks becomes more complex compared
to conventional cellular networks due to the interference arise
between small-cells and macrocells, which thus making quality
of service provisioning more challenging. Recent advances in
deep reinforcement learning (DRL) have inspired its applications
in resource management for 5G HetNets. In this paper, a
survey on the applications of DRL in resource management for
5G HetNets is conducted. In particular, we review the DRL-
based resource management schemes for 5G HetNets in various
domains including energy harvesting, network slicing, cognitive
HetNets, coordinated multipoint transmission, and big data. An
insightful comparative summary and analysis on the surveyed
studies is provided to shed some light on the shortcomings and
research gaps in the current advances in DRL-based resource
management for 5G HetNets. Last but not least, several open
issues and future directions are presented.

I. INTRODUCTION

The explosive growth of data traffics and multimedia ser-

vices has led to an intensive research and development for fifth

generation (5G) communications. 5G systems are expected to

achieve up to 20 Gb/s peak data rates, three-times spectral

efficiency and 100-times energy efficiency compared to the

current fourth generation (4G) systems, as specified in the In-

ternational Mobile Telecommunications (IMT)-2020 [1]. One

of the key technologies to achieve the IMT-2020 specifications

is heterogeneous networks (HetNets). The main feature of this

technology is that low-power small-cell base stations (SBSs)
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are deployed at the hotspot or indoor areas within macrocells

to enhance the data capacity in the areas [2]. Thanks to this

feature, HetNets have been studied intensively, along with

other technologies such as energy harvesting, network slicing,

cognitive radio, coordinated multipoint transmission (CoMP)

and caching. However, the introduction of small-cells within

macrocells makes the resource management in the HetNets

more complex and challenging compared to conventional

cellular networks due to the fact that the HetNets need to take

into account interference between small-cells and macrocells

while guaranteeing quality of service (QoS) for the mobile

users [2].

A. Motivation

Recently, several successes have been witnessed in the

field of machine learning such as the AlphaGo [3]. This has

inspired numerous researchers to investigate the applications

of machine learning on resource management for 5G systems.

In particular, deep reinforcement learning (DRL) has received

much attention in the field due to its powerful optimization

and convergence properties [4], [5]. In DRL, an agent learns

the optimal policy, that is, determine the optimal action for

each possible state (i.e., condition) of the environment, by

estimating the immediate reward generated from performing

an action after observing the state in every time epoch and

by calculating the long-term discounted reward for each state-

action pair. Then, for each possible state, the optimal policy

can be obtained by observing the action which corresponds to

the highest long-term discounted reward. To estimate the long-

term discounted reward for each state-action pair, deep neural

networks (DNNs) are used and can be trained online to learn

approximating the reward values. The DNNs can thus save

the memory required for storing and learning the long-term

discounted reward, especially for environments with a large

action and state spaces. For mathematical details regarding

the DRL, the reader is suggested to refer to the comprehensive

tutorial on DRL given in [5].

Intrigued by the powerful features of DRL, we are motivated

to investigate the applications of DRL in resource management
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research for 5G HetNets in various domains, and to explore

possible future research directions for further development of

5G and beyond.

B. Related Work

A number of surveys on applications of machine learning

techniques in communications and networking can be found

in the literature [4]-[10]. In [4] and [5], the authors review the

applications of DRL in communications and networking. The

survey in [6] investigates various machine learning applica-

tions in wireless networks. In [7] and [8], the surveys focus on

deep learning in mobile and wireless networking. The survey

in [9] emphasizes on machine learning for massive machine

type communications in HetNets. In [10], the survey reviews

the applications of machine learning in data-driven wireless

networks.

Despite the fact that a number of related surveys [4]-[10]

have been done, the scope of these surveys is too wide,

and discussion and analysis on each specific topic covered

in the surveys, especially on resource management for 5G

HetNets, is not sufficiently in-depth. In this paper, we survey

the applications of DRL in resource management for 5G

HetNets in various domains. Unlike the surveys in [4]-[10], our

survey is more focused and specific to resource management

for 5G HetNets, which provides a quicker review in this area.

Moreover, we relate the discussion on the survey with 5G

specifications, which are more useful to industry researchers.

C. Contributions

In this paper, a survey of the applications of DRL in

resource management for 5G HetNets is presented. The con-

tributions of this paper are threefold and can be summarized

as follows:

1) A survey on applications of DRL in resource manage-

ment for 5G HetNets in various domains is provided.

These domains include energy harvesting, network slic-

ing, cognitive HetNets, CoMP and big data.

2) A comparative summary and analysis on the surveyed

DRL-based resource management schemes in terms of

resource management functions, 5G design aspects and

practicality is presented.

3) Based on the aforementioned comparative analysis, sev-

eral open issues and future directions, which are critical

for further exploration, are identified and highlighted.

D. Organization

The remainder of this paper is organized as follows: Sec-

tion II provides an overview of 5G HetNets. In Section III,

DRL-based resource management schemes for 5G HetNets in

different domains are reviewed and discussed. A comparative

summary and analysis on the surveyed schemes is provided

in Section IV. Several open issues and future directions are

presented in Section V. Finally, Section VI concludes the

paper.

Fig. 1. 5G architecture.

II. OVERVIEW OF 5G HETNETS

Major architectural changes have been introduced to the

core network and radio access network sides for 5G cellular

systems. In this section, an overview on 5G architectures and

HetNets is given, followed by an introduction to 5G resource

management functions.

A. 5G Architecture

Fig. 1 shows the overall architecture of a 5G system con-

sisting of a core network known as 5G Core Network (5GC)

and a radio access network known as Next Generation Radio

Access Networks (NG-RAN), interconnected through the so-

called NG interfaces. In the 5GC, there are three main com-

ponents: Access and Mobility Management Function (AMF),

User Plane Function (UPF) and Session Management Function

(SMF). The AMF is responsible for non-access stratum (NAS)

security and idle state mobility, the UPF handles protocol data

unit (PDU) and mobility anchoring, and the SMF allocates

Internet protocol (IP) address for user equipment (UE) and

controls PDU sessions. For further details about 5GC, we refer

the reader to [11] and [12].

On the other hand, the NG-RAN consists of two types of

base stations (BSs): next-generation NodeB (gNB) and next-

generation evolved NodeB (ng-eNB). Both gNB and ng-eNB

manage the downlink and uplink data transmission between

the 5GC and the UE in the 5G network. The difference

between gNB and ng-eNB is that the former serves the UE

based on the 5G New Radio (NR) protocol whereas the

latter is based on the Long Term Evolution (LTE) protocol.

Nevertheless, both types of BSs are responsible for radio

resource management and can be interconnected via so-called

Xn interfaces in the 5G network. We refer the reader to [11]

for further details about NG-RAN.

5G systems adopt a flexible radio resource structure

based on scalable orthogonal frequency division multiplexing

(OFDM) numerologies. The channel bandwidth is divided into

smaller subchannels known as the resource blocks (RBs)1,

each consists of 12 consecutive frequency subcarriers where

1An RB is a subchannel which is the smallest unit of frequency band
allocated by BSs to their associated UEs for data transmission

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1857



Fig. 2. HetNet architecture.

the subcarrier spacing can be scalable. Unlike LTE, 5G sys-

tems support subcarrier spacing of 15 kHz (same as LTE),

30 kHz, 60 kHz, 120 kHz and 240 kHz for each RB. The

transmission timeslot size for the RB also varies as 1 ms,

0.5 ms, 0.25 ms, 0.125 ms and 0.0625 ms, respectively in

the same order [13]. Such a resource structure allows 5G

systems to flexibly support services with diverse requirements.

For example, RBs with a large subcarrier spacing and short

timeslot size are suitable for high-bandwidth, low-latency

applications, whereas RBs with a short subcarrier spacing and

long time timeslot size are suitable for short-packet, delay-

tolerant applications.

B. Heterogeneous Networks

Although 5G specifications for small-cells have not been

provided yet, it has been widely agreed by both academia and

industry that the small-cell technology will be essential in 5G

networks [14]. Fig. 2 shows a 5G HetNet consisting of several

small-cells laying within the macrocell. It is worth noting that

in the context of 5G, the macrocell BS (MBS) refer to the

gNB or ng-eNB. The small-cell base stations (SBSs) basically

behave similarly as the MBS, except that their transmission

power and computational capacity are lower compared to those

of the MBS. We can further classify small-cells based on

their transmission power levels such as picocells (∼30 dBm)

and femtocells (∼20 dBm). Picocell base stations (PBSs) are

usually deployed by the network operator at hotspot areas

where the UE density is high. On the other hand, femtocell

base stations (FBSs) are user-deployed at indoor areas via

the broadband connections such as the digital subscriber line

(DSL) to the core network.

C. Basic Resource Management Functions for 5G HetNets

Here, we review several essential resource management

functions for 5G HetNets, as follows.

1) Link adaptation and power control: These two functions

actually reside in the physical (PHY) layer of each BS and

are responsible to optimize the data transmission between the

BSs and UEs. Link adaptation is responsible for selecting the

appropriate modulation and coding scheme (MCS) for data

transmission given the channel condition of the RBs selected

for the transmission, in order to ensure a target bit error rate.

The MCSs supported in 5G systems include quadrature PSK

(QPSK), 8-quadrature amplitude modulation (QAM), 16QAM,

64QAM, and 256QAM [11]. In 5G systems, the same MCS

must be applied to all RBs assigned to a UE within one

transmission duration [11]. On the other hand, power control

allows adjusting the transmission power level of the BS on the

selected RBs to improve the channel quality.

2) Scheduling: This function is located in the medium

access control (MAC) sublayer in Layer 2 of each BS, and is

responsible for allocating RBs to the UEs associated with the

BS. The RB allocation decision can be made based on several

factors including the RB availability, the channel condition

(measured and reported by the UEs) and quality of service

(QoS) required by the UEs. In the 5G specifications stated

in [11] and [15], 5G systems allows RB scheduling in units

of slots, and support type-0 and type-1 scheduling in the

frequency domain. In the type-0 scheduling, any number of

groups of consecutive RBs, where each RB group may consist

of two or more consecutive RBs depending on the bandwidth

part2 size configured for the UE, can be allocated to the

UE; whereas the type-1 scheduling allocates any number of

consecutive RBs within the bandwidth part configured for the

UE.

3) User association: This function is actually performed

via the cell selection, admission control and handover mecha-

nisms located in the radio resource control (RRC) layer of

each BS, which allows UEs to establish connections with

targeted BSs for data transmission. User association can be

implemented based on various objectives such as load bal-

ancing and QoS satisfaction, which are similar to those for

scheduling. It is noteworthy that small-cells can operate in

different modes where UEs can have different priorities for

access and association [2], [16].

4) Cell Activation/Deactivation: This function is responsi-

ble to turn BSs into active or sleep modes. BSs can be turned

to sleep mode when they do not serve any users, thus reducing

the power consumption.

III. DRL-BASED RESOURCE MANAGEMENT FOR 5G

HETNETS

In this section, we survey the DRL-based resource man-

agement studies for 5G HetNets. In particular, we categorize

the surveyed schemes into the following areas: Conventional

HetNets, HetNets with energy harvesting, HetNets with net-

work slicing, cognitive HetNets, CoMP-enabled HetNets, and

HetNets with big data.

A. Conventional HetNets

In [17], the authors study the user association and re-

source allocation problem for a three-tier HetNet consisting of

MBSs, PBSs and FBSs. The study formulates an optimization

problem that aims to simultaneously maximize the network

throughput and minimize the network power consumption by

means of user association and RB allocation. To approach this

problem, the authors model it as a Markov decision process

2In the 5G context, a bandwidth part refers to a subset of contiguous RBs
within a carrier bandwidth.
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(MDP) and solve it using a multi-agent DRL technique known

as double deep Q-network (DDQN) [18]. In the MDP, the UEs

behave as the agents with their states, actions, and rewards

modeled as their QoS satisfaction level, user association and

RB allocation decisions, and the objective function value in

the aforementioned optimization problem subtracted by an

amount of cost after the agent selects an action, respectively.

In the DDQN, Q-learning (QL) [19] is used to solve the MDP

by finding the optimal policy through iteratively updating the

Q-value3 for each state-actionh pair. Further, two DNNs are

used, with one (known as the online network) being used to

determine the best action that leads to the highest Q-value and

another (known as the target network) to approximate the Q-

value. Subsequently, the transition, i.e., the state change, the

action performed and the reward are stored in a replay memory.

The transitions stored in the memory will then be used to

train the DNNs by randomly sampling the minibatches of

transitions in the memory. The proposed DDQN-based scheme

is shown to outperform the conventional QL and deep QL

(DQL)4 techniques in terms of achievable network throughput,

however the network power consumption is not evaluated. It is

noteworthy that the RB allocation mechanism in [17] restricts

each UE to be assigned at most one RB, unlike 5G that can

allocate several consecutive RBs in groups, as mentioned in

Section II-C.

B. HetNets with Energy Harvesting

Energy harvesting wireless communications have been gain-

ing interest in both academia and industry. The key idea of

energy harvesting is to install renewable (off-grid) energy

sources such as photovoltaic solar panels to help power up

wireless networks. As such, greenhouse emissions and the

on-grid energy costs can be reduced. In [20], the application

of DRL on resource management for HetNets equipped with

both on- and off-grid energy sources is investigated. The study

considers a HetNets with only SBSs (i.e., without MBSs) and a

cloud processor, which is responsible to control the activation

of all SBSs in the network. A single-objective optimization

problem is formulated to maximize the network energy ef-

ficiency and minimize the total traffic delay at a particular

time instance, by means of small-cell activation. To solve

the problem, DQL is implemented with the cloud processor

behaving as the learning agent. Here, the state of the network

is modeled as the SBSs’ harvested energy levels, total energy

levels, traffic loads, throughput values and traffic delays. The

actions of the agent are the SBS activation decisions. After

the agent performs an action, the reward is calculated as a

long-term discounted version of the objective function in the

optimization problem. The solution to the problem is then

found by performing QL through iteratively updating the Q-

value for each state-action pair. In each update, the Q-value is

approximated using a DNN and the new transition generated

will be stored in the replay memory for training the DNN.

3The Q-value of a state-action pair represents the long-term discounted
reward of the pair.

4QL with one DNN for approximating the Q-value.

Simulation results show that the proposed DQL-based SBS

activation scheme attains substantial energy efficiency gain and

traffic delay reduction compared to the conventional QL-based

scheme. Despite such promising results, the study is lacking of

considering the MBS in the network, since an MBS consumes

significantly more power compared to an SBS.

C. HetNets with Network Slicing

Network slicing has originally emerged as a network sharing

technology to allow multiple mobile operators sharing the

same physical network infrastructure. The underlying principle

of network slicing is that the physical network infrastructure

and resources are “sliced” into a number of network slices

with each consisting of a set of virtual network functions and

resources, and each of the operators operate on one of these

network slices [21]. Currently, the network slicing technology

not only can slice the physical network based on the number

of mobile operators sharing the network, but can also slice

according to the number of different services provided to

the UEs in the network [4]. In [22], the authors focuses

on radio access network slicing in a 5G HetNet, specifically

the slicing of RBs. Considering the heterogeneous backhaul

capacity of the HetNet, a RAN slicing framework is developed

to slice the RBs according to the service types currently

available in the network. In this framework, DQL is applied

to autonomously refine the slicing process. Assuming the

presence of a controller which behaves as the agent, the state

for the DQL is modeled as the QoS utility, fraction of RBs

allocated to each slice and RB utilization of each slice. The

available actions of the agent are a set of increment/decrement

percentages for increasing/decreasing the fraction of resources

allocated to each slice. The reward for each state-action pair

is calculated as the weighted sum of the QoS utility and slice

resource utilization. The Q-values are approximated using a

DNN trained the with experience replay strategy. The authors

implemented the proposed DQL in two modes, i.e., allocating

and reserving the resource fractions of each slice. Performance

results show that substantial QoS satisfaction and resource

utilization improvements are attained over the conventional

network slicing schemes. Nevertheless, the channel model

considered in [22] appears to have omitted the interference

between the MBS and the SBSs. Hence, the performance

results in an interference-accounted scenario, especially the

QoS satisfaction, may vary significantly. Moreover, the RB

slicing and allocation mechanisms are not compliant with the

5G specifications for RB scheduling. Therefore, the implemen-

tation of the proposed scheme in an actual 5G system may be

impractical.

D. Cognitive HetNets

Cognitive radio [23] has been applied to SBSs in HetNets to

address the spectrum scarcity issues. The CR-enabled SBSs,

also known as the secondary transmitter, can detect and

exploit under-utilized spectrum in the primary band belonging

to the MBS for data transmission. One interesting study

in [24] has developed a link adaptation scheme for such
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networks based on DRL. The main objective of this study

is to allow the MBS to learn and maximize its transmission

rate by choosing the appropriate MCS based on the historical

interference information under a scenario when secondary

transmissions are ongoing. Here, the MBS behaves as the

agent and the state of the DRL framework consists of the

action taken, reward yielded, signal-to-interference-plus-noise

ratio (SINR) received and SINR per bit received by the MBS.

The actions of the MBS are the different choices of MCSs

and the reward for each state-action pair is calculated by the

amount of bits transmitted using the selected MCS minus the

MCS switching cost. Similar to [17], DDQN is applied to

iteratively update the Q-value for each state-action pair to

find the optimal MCS selection. The proposed MCS selection

scheme is shown to achieve a reasonably low system overheads

and high transmission rate. However, the proposed scheme

appears to only consider a single primary data transmission,

which is a less realistic case.

E. CoMP-Enabled HetNets

The main purpose of CoMP is to boost the transmission

rate of UEs as it allows each UE to have concurrent data

transmissions with multiple MBSs and SBSs within a trans-

mission duration. Since HetNets consist of densely deployed

multiple MBSs and SBSs, CoMP can be fully leveraged to

enhance the network capacity. Exploiting this fact, the study

in [25] design a joint user association and power alloca-

tion scheme based on DQL for CoMP-enabled HetNets. In

particular, the authors aims to address the non-line-of-sight

(NLOS)5 problem for the networks. An optimization problem

is formulated to maximize the network throughput by means of

user association and power control, subject to the transmission

power and SINR constraints. The DQL is implemented as

follows: The UEs behave as the agents having states defined

as the discretized channel gain, actions as the user association

and power control decisions, and the reward function as the

total network throughput. The proposed DQL scheme is shown

to outperform an existing scheme in terms of throughput for

the network.

F. HetNets with Big Data

One particular study in [26] has investigated the application

of networking, caching and computing on HetNets for energy-

efficient communications. The authors consider a HetNet,

where each BS can cache a certain amount of content (e.g., text

or video files) and a computing server is installed at the MBS,

and that the channel bandwidth is equally distributed among

all UEs. A DQL-based user association scheme is developed

to connect the UEs to the SBSs or the MBS for obtaining the

content requested by the UEs, depending on the availability of

the content in each of the BSs. For the proposed DQL-based

scheme, the state of the network is modeled as the channel

condition of each SBS, the computational capability of the

computing server in the network, the computational capability

5A NLOS link refer to a partially-obstructed transmission link between a
transmitter and a receiver.

of the UEs, the cache state of each UE and the file matching

parameter. The actions of the network are the user association

decisions of each UE. The reward function is modeled as

the energy consumption required for data transmission and

computing. Significant energy reduction is observed across

different cache sizes in the SBSs for the proposed DQL-

based user association scheme compared to existing schemes.

However, it is unclear whether the MBS or the computing

server will behave as the agent executing the proposed scheme.

IV. COMPARATIVE SUMMARY AND ANALYSIS

In this section, the DRL-based resource management

schemes surveyed in Section III are compared and summarized

in terms of resource management functions, 5G design aspects

and practicality, as shown in Table I.

For the resource management functions, we observe from

Table I that link adaptation, power control and cell activation

have not much been jointly considered in DRL-based resource

management for 5G HetNets. In particular, these resource

management functions, which can have great impact to energy

efficiency, have not been incorporated in [17], [20] and [26]

that focus on energy efficiency.

For the 5G design aspects, we discover that only one

study, i.e., [24] has considered analyzing the system overheads

incurred by the implementation of the DRL. The analysis of

system overheads is essential as a large amount of overheads

can degrade the throughput and energy efficiency performance.

On the other hand, we notice that the study in [22] has

omitted the interference aspect, which is a vital issue that can

profoundly affect the throughput performance of the HetNet.

For the practicality, we identify the implementation frame-

work and 5G-compatibility of the surveyed schemes. We find

that the DRL-based resource management schemes proposed

in [17], [24] and [25] are implemented in a decentralized

framework, which results in a low-complexity operation since

the optimization tasks have been distributed and executed

concurrently. Nonetheless, these studies assume that the agents

have a sufficient computational capability for executing the

distributed tasks and the resource management operation is

perfectly synchronized. Meanwhile, the DRL-based resource

management schemes in [20], [22] and [26] are based on

a centralized implementation. The optimization tasks are all

taken care of by the central processor. However, the centralized

schemes may fail to perform if the central processor mal-

functions or breaks down due to unforeseen circumstances.

As such, a backup processor may be required. We also note

that the studies that involve RB allocation, i.e., [17] and

[22] are not 5G-compatible, as a result of the fact that their

RB allocation mechanisms are not compliant with the 5G

specifications.

V. OPEN ISSUES AND FUTURE DIRECTIONS

Based on the comparative analysis from Section IV, sev-

eral open issues and possible future directions for resource

management in 5G HetNets are identified.
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TABLE I
COMPARISON BETWEEN VARIOUS SURVEYED DRL-BASED RESOURCE MANAGEMENT SCHEMES FOR 5G HETNETS

Domain Conventional Energy Harvesting Network Slicing Cognitive CoMP Big Data

Study [17] [20] [22] [24] [25] [26]

Resource
Management

Functions

Link Adaptation X
Power Control X

Scheduling
(RB Allocation)

X X
User Association X X X X
Cell Activation X

Design
Aspects

Energy
Efficiency

X X X
QoS X X X X

Resource
Utilization

X X
Interference X X X X X

System
Overheads

X

Practicality

Implementation
Framework

Decentralized
to UEs

Centralized to a
cloud processor

Centralized to
a controller

Decentralized
to the MBS

Decentralized
to UEs

Centralized

5G-Compatibility No Yes No Yes Yes Yes

A. DRL-Based Joint Resource Management Functions for 5G

HetNets

From our survey, only a few studies [17], [22], [25] have

applied DRL to jointly perform multiple resource management

functions for 5G HetNets. The performance of the networks

can be further optimized by incorporating other resource

management functions as part of the actions of the DRL agents

in the proposed schemes. For instance, power control and cell

activation can jointly performed together with user associa-

tion and scheduling in the DRL-based resource management

scheme proposed in [17] to further enhance the network energy

efficiency.

B. Multi-Objective DRL-Based Resource Management

Since 5G systems are expected to excel in various aspects

(e.g., high spectral and energy efficiencies, ultra-low delays

and high peak rates), multi-objective resource management

is crucial. However, multi-objective resource management is

very challenging for 5G HetNets as many of the objectives or

design aspects contradict among each other [27]. For example,

high resource utilization may lead to high interference. Several

of the surveyed studies [17], [20], [22] have considered

such resource management for 5G HetNets. However, the

consideration of the multiple objectives in these schemes is

not sufficiently comprehensive to meet the 5G expectations.

C. Flexible Resource Management Design for 5G and Beyond

In 5G, the subcarrier spacing and timeslot size of RBs can

be flexibly scaled to support the applications, depending on the

requirements and characteristics of the applications. However,

such flexibility is largely omitted in the RB scheduling design

in the literature (e.g., [17] and [22]) for 5G HetNets. As next-

generation wireless networks will support applications with

highly diverse requirements, intelligent resource management

is necessary to determine and flexibly scale the resource

structure to accommodate the applications.

D. DRL-Based Load Balancing for 5G HetNets

Despite that a number of 5G design aspects have been

considered for HetNets, DRL-based load balancing for Het-

Nets has not been investigated under the 5G context. The

main objective of load balancing is to shift some of the

UEs connected to the congested BSs to other underloaded

BSs, thereby enhancing BS utilization and leading to better

QoS provisioning for UEs. This area has been regaining the

interest for 5G system development and some related studies

such as [28] have been carried out recently. Nevertheless, the

existing related studies are still lacking in terms of autonomous

adaptation and optimization capabilities, which are vital to

realize a self-organizing 5G network, hence the need for

machine learning techniques such as DRL.

VI. CONCLUSIONS

In this paper, we have conducted a survey of the application

of DRL in resource management for 5G HetNets. Firstly, an

overview of 5G HetNets has been provided to introduce the 5G

architecture, HetNets and several essential resource manage-

ment functions for HetNets. Then, we have reviewed several

DRL-based resource management schemes for 5G HetNets in

different domains such as energy harvesting, network slicing,

cognitive HetNets, CoMP-enabled HetNets, and big data.

Specifically, we have revealed the DRL framework design of

each of these schemes in terms of states, actions and rewards

in meeting the designated resource management requirements

and objectives of the studies. Next, a comparative summary

and analysis on the surveyed studies in terms of resource

management functions, 5G design aspects and practicality is

provided. From the comparative analysis, we have drawn and

highlighted several open issues and future directions, which

are critical for future development of DRL-based resource

management for 5G HetNets.
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