
A Generalization of Laplace Nonnegative Matrix
Factorization and Its Multichannel Extension

Hiroki Tanji∗, Takahiro Murakami∗†, and Hiroyuki Kamata∗
∗ Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Japan

† Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, UK
{htanji, tmrkm, kamata}@meiji.ac.jp

Abstract—The aim of this paper is to generalize the statistical
models of nonnegative matrix factorization (NMF) and mul-
tichannel NMF (MNMF). For the NMF and its multichannel
extensions, various statistical models have been proposed to
improve the model flexibility in the literature on signal separa-
tion. However, few studies have been done on the generalization
which includes the model based on the Laplace distribution.
Thus, we propose the generalized models of the NMF and
the MNMF, which include the models based on the Gaussian
distribution and the two types of the Laplace distributions,
using the Bessel function distribution. To estimate unknown
model parameters, we derive the update rules based on the
majorization-minimization algorithm. The performances of the
proposed NMF and MNMF are evaluated in fitting synthetic
data and music signal separation, respectively.

I. INTRODUCTION

Nonnegative matrix factorization (NMF) [1] have been
widely exploited in single-channel signal separation [2]–[5].
In the NMF for audio signals, the observed nonnegative
spectrogram Y ∈ RM×N+ (R+ = [0,∞)) is decomposed into
the set of frequently appearing spectral patterns W ∈ RM×K+

and time-varying activation weights H ∈ RK×N+ [6] as
Y 'WH .

To obtain W and H , the reconstruction error between Y
and WH is minimized. Fevotte derived the Itakura-Saito
divergence for the reconstruction error, assuming the Gaus-
sian distribution for each time-frequency bin of the observed
complex spectrogram [7]. As alternatives of the complex
Gaussian distribution, the Cauchy and the Levy distributions
have been used for the divergence to model robust NMF
against outliers [4], [8]. Moreover, we have been proposed
Laplace-NMF [9], which is based on the Laplace distribution,
motivated by the previous works [10], [11] that employ the
Laplace distribution for acoustic signals. Note that the Laplace
distribution has two types of definitions using the modified
Bessel function of the second kind [10], [12] and the expo-
nential function [11]. For convenience, we henceforth refer to
them as the Bessel-function-type (BF) and the exponential-
function-type (EF) Laplace distributions, respectively. In [9],
using these definitions, two NMF named BF- and EF-Laplace-
NMF are proposed.

To improve model flexibility, there have been several works
on the generalization of the statistical model for the NMF.
For a generalization which includes the NMF based on
the Gaussian (Gaussian-NMF [7]) and the Cauchy distribu-

tion (Cauchy-NMF [4]), Simsekli has formulated α-stable-
NMF [13] using the symmetric α-stable (SαS) distribution.
Due to the difficulty of representing the probability density
function (PDF) of the SαS distribution, in [5], the NMF based
on the Student’s t distribution has been proposed as another
generalization of Gaussian- and Cauchy-NMF. Moreover, us-
ing the generalized Gaussian distribution (GGD), Kitamura has
recently proposed GGD-NMF [14], which includes Gaussian-
and EF-Laplace-NMF.

These statistical models for the NMF have been applied to
audio denoising and semi-supervised signal separation. How-
ever, the NMF cannot be straightforwardly applied to blind
signal separation, because the basis spectra are not grouped
into each source. To overcome this drawback, multichannel
NMF (MNMF) has been proposed in [15]. In the MNMF,
using the spatial covariance matrix [16], spatial properties
of the sources are introduced to the NMF. Using the spatial
properties, the basis spectra are clustered. The MNMF has
been applied to speech recognition [17] and unsupervised
beamforming [18] in addition to blind signal separation. The
optimization algorithm of the MNMF estimates the mixing
system and the source spectrograms which minimize the cost
function based on the Gaussian distribution. Also in the
MNMF, the cost function based on the Student’s t distribution
has been proposed to improve flexibility [19].

Independent low-rank matrix analysis (ILRMA) [20], [21]
has been recently growing up as another multichannel exten-
sion of the NMF. Owing to the restricted spatial model, the
ILRMA achieves faster convergence and better robustness to
initialization than the MNMF. However, the ILRMA is not
executable when the number of microphone is less than the
number of sources because it estimates the demixing system.

In this paper, towards flexible models of the NMF and
the MNMF, we seek their generalized models which include
the model based on the Laplace distribution. For our model,
we focus on the Bessel function distribution [22]. In this
distribution, its sharpness is controlled by the shape parameter
η > 0. When η takes η = 1 and η = 3/2, the distribution
of a univariate complex-valued random variable is reduced
to the BF [10], [12] and the EF Laplace distributions [11],
respectively. Moreover, when η → ∞, the Bessel function
distribution converges to the Gaussian distribution [22]. These
characteristics allow to generalize the statistical models for the
NMF and the MNMF.
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Using the Bessel function distribution, we propose the
generalized statistical models called Bessel-NMF and Bessel-
MNMF. Thanks to the characteristics of the distribution, our
statistical models include the models based on the Laplace
and the Gaussian distributions. In this paper, we describe the
cost function of Bessel-MNMF. Moreover, the convergence-
guaranteed optimization algorithm is derived to minimize the
cost function. Using the result in Bessel-MNMF, we present
the cost function and the update rules of the proposed single-
channel NMF.

II. REVIEW OF MULTICHANNEL NMF

We review the conventional MNMF [15] in this section.
Let smnl ∈ C be the complex spectrogram at the mth
frequency bin and the nth frame of the lth source, where
l = 1, . . . , L, m = 1, . . . ,M , and n = 1, . . . , N . The
sources are observed using D microphones in a reverberant
environment. For each observation point, the lth source is
filtered by gml = [gml1, . . . , gmlD]> ∈ CD. Therefore,
using the spatial image [16] ςmnl = gmlsmnl, we have the
observed multichannel complex spectrogram ymn ∈ CD as
ymn =

∑L
l=1 ςmnl.

In the MNMF, the observed data Ymn = ymny
†
mn is

approximated using the Hermitian positive semidefinite matrix
Ŷmn as

Ymn ' Ŷmn =
L∑
l=1

Amlvmnl, (1)

where † is the conjugate transpose, Aml ∈ CD×D is the spatial
covariance matrix [16], which represents the spatial paths, and
vmnl ∈ R+ represents the power spectrogram of the source.
Using the basis spectra W = [wmk] and their weights H =
[hkn] in the NMF, vmnl is represented as

vmnl =
K∑
k=1

qlkwmkhkn, (2)

where K is the number of bases, and qlk ∈ [0, 1] is the contri-
bution of the kth basis for lth source satisfying

∑L
l=1 qlk = 1.

The cost function for the conventional MNMF is derived us-
ing the Gaussian distribution. When ςmnl follows the Gaussian
distribution, ymn also follows the Gaussian with zero mean
and the covariance matrix Ŷmn written as

NC(ymn; 0, Ŷmn)=π−Ddet[Ŷmn]−1exp(−Tr[YmnŶ
−1
mn]),

(3)
where det[·] is the determinant, and Tr[·] is the matrix
trace. The cost function to be minimized in the conventional
MNMF is therefore given as −

∑
m,n logNC(ymn; 0, Ŷmn).

The unknown parameters (i.e., Amn, qlk, wmk, and hkn) are
estimated using the multiplicative update rules.

III. STATISTICAL MODELS BASED ON THE BESSEL
FUNCTION DISTRIBUTION

We propose Bessel-NMF and Bessel-MNMF in this section.
In Sect. III-A and III-B, we describe the formulation of
Bessel-MNMF, which is the generalization of the conventional

Fig. 1. Numerical solution of (7).

MNMF, and we derive the update rules for Bessel-MNMF,
respectively. On the basis of the formulation of Bessel-MNMF,
we present Bessel-NMF in Sect. III-C.

A. Cost function

To generalize the conventional cost function, we utilize the
Bessel function distribution. Using the Gaussian scale mixture,
the PDF [22] BKC(x) of a complex-valued random vector
x ∈ CD is written as

BKC(x) =

∫
R+

NC(x; 0, zΣ)G(z; η, 1)dz, (4)

where G(z; η, 1) is the gamma distributions with shape η and
unit scale defined as

G(z; η, 1) =
1

Γ(η)
zη−1e−z. (5)

When η = 1, BKC(x) is reduced to the BF Laplace distribu-
tion [10], [12]. Also, when η = D+1/2, BKC(x) is equivalent
to the EF Laplace distribution [11].

Substituting ymn, λ−2Ŷmn, and zmn into x, Σ, and z of
(4), respectively, we obtain the generalized cost function as

F(Θ) =−
∑
m,n

log p(ymn; Ŷmn)

c
=−

∑
m,n

log

(
det[Ŷmn]−1Tr[YmnŶ

−1
mn]

η−D
2

Kη−D

(
2λ

√
Tr[YmnŶ

−1
mn]

))
, (6)

where λ is a positive constant, Θ =
{
{Amn}, {qlk},W ,H

}
is the set of unknown parameters, c

= is equality up to con-
stant terms, and Kν(x) (ν ∈ R, x > 0) is the modified
Bessel function of the second kind defined as Kν(x) =
1
2

∫∞
0
u−ν−1 exp

(
− x

2 (u+u−1)
)
du. In (6), we have to choose

λ so that Ymn = Ŷmn,∀m,n minimizes the cost function.
Therefore, λ is given as the solution of

∂F(Θ)

∂Ŷmn

∣∣∣∣ ˆYmn=Ymn

= 0. (7)

The solution of (7) can be obtained without Ymn and Ŷmn.
We have λ =

√
D, especially when p(ymn; Ŷmn) is equiva-

lent to the EF Laplace distribution (i.e., η = D + 1/2). The
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solutions for various values of η are depicted in Fig. 1. Note
that the green line shows λ for the cost function of Bessel-
NMF described in Sect. III-C.

Owing to introducing λ, p(ymn; Ŷmn) converges to the
Gaussian distribution when η →∞ [22]. Our statistical model
therefore includes the model based on the Laplace and the
Gaussian distributions.

B. Optimization algorithm
Given the observed data Ymn, (6) is minimized with respect

to Θ. To estimate the parameters, we derive the multiplicative
update rules based on the majorization-minimization (MM)
algorithm [23], [24], using the upper bound of F(Θ).

We introduce three inequalities to derive the upper bound
in advance. For log(ymn; Θ), the probabilistic form of the
Jensen’s inequality is given as

log(ymn; Θ) ≥∫
R+

p(zmn|ymn; Θ̃) log
p(ymn|zmn;Θ)p(zmn)

p(zmn|ymn;
˜Θ)

dzmn, (8)

where Θ̃ is the latest value of Θ, Ep(x)[x] is the expectation
defined as Ep(x)[x] =

∫
xp(x)dx, and

p(ymn|zmn; Θ) = NC(ymn; 0, λ−2zmnŶmn) (9)
p(zmn) = G(zmn; η, 1). (10)

For log det[Ŷmn] and Tr[YmnŶ
−1
mn], the first-order Taylor

expansion [19] at any Hermitian positive semidefinite matrix
Φmn ∈ CD×D and the Sawada’s inequality [15] are

det[Ŷmn] ≤ log det[Φmn] + Tr[Φ−1mnŶmn]−D (11)

Tr[YmnŶ
−1
mn] ≤

∑
k,l

1

qlkwmkhkn
Tr[YmnR

†
mnlkA

−1
mlRmnlk],

(12)

respectively, where Rmnlk ∈ CD×D is the Hermitian positive
semidefinite matrix that satisfies

∑
k,lRmnlk = ID, and

ID is the identity matrix of size D. In (11) and (12), the
equalities hold if and only if Φmn = Ŷmn and Rmnlk =

AmlŶ
−1
mnqlkwmkhkn, respectively.

Applying (8) to F(Θ), we obtain the upper bound Q(Θ; Θ̃)
≥ F(Θ) as

Q(Θ; Θ̃)
c
=
∑
m,n

(
det[Ŷmn] + ζmnTr[YmnŶ

−1
mn]
)
, (13)

where ζmn = λ2E
p(zmn|ymn;

˜Θ)
[z−1mn]. Equation (13) has

simple representation, but it is still intractable with respect to
Ŷmn. Thus, we majorize Q(Θ; Θ̃) using (11) and (12). Where
Ψ =

{
{Φmn}, {Rmnlk}

}
, the upper bound Q+(Θ; Θ̃,Ψ) ≥

Q(Θ; Θ̃) is written as

Q+(Θ; Θ̃,Ψ)
c
=
∑
m,n

(
Tr[Φ−1mnŶmn]

+
∑
k,l

ζmn
qlkwmkhkn

Tr[YmnR
†
mnlkA

−1
mlRmnlk]

)
.

(14)

Using the partial derivatives of Q+(Θ; Θ̃,Ψ) with respect
to Aml, qlk, wmk, and hkn, we get the update rules as

Aml ← Aml∆
1
2

ml

(
∆

1
2

mlAmlΛmlAml∆
1
2

ml

)− 1
2

∆
1
2

mlAml

(15)

qlk ← qlk

√∑
m,n ζmnτmnlwmkhkn∑
m,n %mnlwmkhkn

(16)

wmk ← wmk

√∑
l,n ζmnτmnlqlkhkn∑
l,n %mnlqlkhkn

(17)

hkn ← hkn

√∑
l,m ζmnτmnlqlkwmk∑
l,m %mnlqlkwmk

, (18)

where

ζmn =
λKD−η+1(2λγmn)

γmnKD−η(2λγmn)
(19)

γmn =

√
Tr[YmnŶ

−1
mn] (20)

τmnl = Tr[Ŷ
−1
mnY mnŶ

−1
mnAml] (21)

%mnl = Tr[Ŷ
−1
mnAml] (22)

Λml =
∑
n,k

Ŷ
−1
mnqlkwmkhkn (23)

∆ml =
∑
n,k

Ŷ
−1
mnYmnŶ

−1
mnζmnqlkwmkhkn. (24)

To eliminate the scale ambiguity, we normalize Aml, qlk, and
wmk such that Tr[Aml],

∑
l qlk, and

∑
m wmk are unity.

C. Bessel-NMF

On the basis of the discussion in the previous subsections,
we describe the formulation and the optimization algorithm
of Bessel-NMF. In the NMF, the time-frequency bin of the
observed single-channel complex spectrogram yCmn ∈ C is
approximated as

|yCmn|δ ' ŷmn =
K∑
k=1

wmkhkn, (25)

where δ > 0 is the domain parameter [14]. To obtain the
approximate of the amplitude and the power spectra, δ is set
to δ = 1 and δ = 2, respectively.

Replacing Ymn and Ŷmn in (6) with Ymn ← |yCmn|2 and
Ŷmn ← ŷ

2/δ
mn , respectively, we define the cost function of

Bessel-NMF as

f(W ,H)
c
= −

∑
m,n

log

(
ŷ−(η+1)/δ
mn Kη−1

(
2λ
|yCmn|
ŷ
1/δ
mn

))
.

(26)
We show the divergence and the PDF with respect to |yCmn|2

in Fig. 2. The Bessel function distribution has heavy-tail
compared to the Gaussian distribution. Moreover, we can see
that the divergence and the PDF approach to the Gaussian, as
η is increased.
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Fig. 2. Cost function and PDF of Bessel-NMF.

Equation (26) is also minimized using the MM algorithm to
obtain W and H . We use (8), (11), and the Jensen’s inequality

ŷ−2/δmn ≤
K∑
k=1

r
2/δ+1
mnk

(wmkhkn)2/δ
, (27)

to derive the upper bound which is minimized instead of
f(W ,H), where rmnk > 0,∀m,n, k and

∑
k ρmnk = 1.

Using auxiliary variables ϕ = {ϕmn} (ϕmn > 0) and
r = {rmnk}, the upper bound f+(W ,H,ϕ, r) is represented
as

f+(W ,H,ϕ, r) =
∑
m,n

(
2ŷmn
δϕmn

+

K∑
k=1

ζmn|ymn|2r2/δ+1
mnk

(wmkhkn)2/δ

)
.

(28)
By taking the derivatives of f+(W ,H,ϕ, r) with respect to
wmk and hkn, we get following update rules:

wmk ← wmk

∑n
ζmn|ymn|2

ŷ
2/δ+1
mn

hkn∑
n hkn/ŷmn

δ/(δ+2)

(29)

hkn ← hkn

∑m
ζmn|ymn|2

ŷ
2/δ+1
mn

wmk∑
m wmk/ŷmn

δ/(δ+2)

. (30)

Note that ζmn is updated using (19), where D = 1 and γmn =

|ymn|/ŷ1/δmn .

IV. SIMULATIONS

In this section, we present the results of the fitting data using
Bessel-NMF. Moreover, we report the separation performance
of Bessel-MNMF.

A. Fitting synthetic data using Bessel-NMF

To evaluate the fitting ability of Bessel-NMF, we generated
the plaid random matrix [9] following the BF and the EF
Laplace distributions. The size of the observed matrix and the
number of basis were 50×50 and 5, respectively. The domain
parameter was set to δ = 1 and 2 to obtain the nonnegative
observation. We conducted 500 iterations of the proposed algo-
rithm of Bessel-NMF using the various value of η. Moreover,
we performed the MM algorithm for Gaussian-NMF [14] to
compare. To measure performance, the mean squared error

Fig. 3. Reconstruction qualities by Bessel-NMF in fitting Laplace distributed
data. Lower is better.

Fig. 4. Recording condition of the impulse response E2A (reverberation time
T60 = 300 [ms]) extracted from RWCP database [25].

(MSE) and the mean of the generalized Kullback-Leibler (KL)
divergence [1] were used, where they are defined as

MSE =
1

MN

∑
m,n

(|ymn|δ − ŷmn)2 (31)

MeanKLD=
1

MN

∑
m,n

(
|ymn|δ log |ymn|

δ

ŷmn
− |ymn|δ + ŷmn

)
,

(32)

respectively. We obtained the evaluation indices using 20 dif-
ferent sets of randomly generated initial values for 3 different
observed matrices.

The results are depicted in Fig. 3. Since the cost function
of Bessel-NMF converges the Gaussian cost function when
η →∞, the fitting ability of Bessel-NMF approaches that of
Gaussian-NMF as η is increased in Figs. 3(a), (c), and (d).
Although the update rules of Bessel-NMF are derived using
different upper bound from Gaussian-NMF, the algorithms
show similar dependence on initialization.

B. Music signal separation

We compared the performances in musical signal separation.
In this experiment, we synthesized three-channel music mix-
ture using three sources extracted from SiSEC database [26].
The sets of sources are listed in Table I. The sampling
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Fig. 5. Average SDR improvements of the conventional and the proposed MNMF. Higher is better.

TABLE I
DRY SOURCES FOR MUSIC SIGNAL SEPARATION EXTRACTED FROM

SISEC2011 DATABASE [26].

ID Name Source (1, 2, 3)
ID1 bearlin-roads guitar, piano, vocal (male)
ID2 ultimate nz tour drum, synthesizer, vocal (female)

frequency was 16 [kHz]. We convoluted the impulse response
“E2A” in RWCP database [25] with the sources to get the
observed signal. The impulse response which we used was
obtained under the conditions shown in Fig. 4. To obtain
the multichannel spectrogram, we performed the short-time
Fourier transform (STFT) using a 64-ms-long Hamming win-
dow with a 16-ms-long shift. We executed the MM algorithm
for Bessel-MNMF with η = 0.1, 0.5, 1, 3.5, 10, and 30. Note
again that Bessel-MNMF assumes the BF and the EF Laplace
distributions when η = 1 and 3.5, respectively. To evaluate
separation performances, we measured the source-to-distortion
ratio (SDR) [27], using 10 different sets of the initial values.
The SDRs were computed using the Python implementa-
tion [28] of the BSS Eval Matlab toolbox [27]. To compare,
we performed Gaussian-MNMF [15] and t-MNMF [19]. In
t-MNMF, the degree-of-freedom was set to ν = 20, according
to our best assessment. In this experiment, we assumed that
the number of sources was known. The number of bases was
set to 30. We initialized wmk and hkn using nonnegative
random values. qlk was initially set to random values around
1/L. To reduce dependence on initial values, using the true
value of the spatial images, we initialized Aml such as
Aml ← 1

N

∑N
n=1 ςmnlς

†
mnl. The initial values of Aml, qlk,

and wmk were normalized as described in Sect. III-B. We
updated the parameters using the following steps:

1) Update wmk and hkn 20 times using (17) and (18) while
Aml and qlk are fixed.

2) Update Aml, qlk, wmk, and hkn 500 times using (15)–
(18).

The evaluation result is shown in Fig. 5. The separation
performances of Bessel-MNMF are better than that of the
conventional methods excepted for Drum in ID2 (Fig. 5(d)).
An informal listening test for ID1 shows that Bessel-MNMF
provided the separated signals with reduced residual inter-
ference compared to the conventional MNMF. However, for
ID2, Bessel-MNMF with η = 0.1 often provided unfavorable
estimates for qlk due to slow convergence. Although we used
oracle initialization in this simulation, this results indicate that
acceleration of the algorithm is an open problem.

V. CONCLUSIONS

In this paper, we proposed the generalizations of the NMF
and the MNMF, named Bessel-NMF and Bessel-MNMF, based
on the Bessel function distribution. Moreover, we derived
the MM algorithms for the proposed cost functions. The
evaluation results in music signal separation demonstrated the
Bessel-MNMF gives promising results. Future works includes
further evaluation of the proposed methods to find the optimal
value of η and the acceleration of the algorithms.
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