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Abstract—In this paper, we develop a sequential prediction
method of quasi-periodicity based on Gaussian process state
space model. We introduce a latent variable to represent the
phase hidden in the quasi-periodic phenomenon. The proposed
prediction method adopts the predictive distribution for the
starting point of the next period. The hyperparameters of the
Gaussian process can be inferred by using particle Markov Chain
Monte Carlo method. By using basal body temperature data of 17
female subjects, we evaluated the performance of the proposed
method in the prediction accuracy of menstrual cycle length.
The results showed that the prediction accuracy was improved
compared with the conventional calendar method in the case that
the fluctuation of the cycle length within 5 days.

I. INTRODUCTION

This study focuses on quasi-periodicity that appears in
various natural phenomena. Quasi-periodicity means that the
pattern obtained by observing the target system does not have
a stationary period and that the period itself has fluctuations.
We can observe quasi-periodic phenomena such as increase
and decrease of population of living things [1], biological
rhythm [2], atmosphere-ocean interaction such as El Nino
phenomenon, Arctic oscillation, and climate change [3], sun
black spots [4] and magnetic storm [5], etc. In addition,
changes in basal body temperature of female correspond to
circadian rhythm, which is one of the biological rhythms. We
assume a situation where time-series data of quasi-periodic
phenomena can be obtained sequentially, and consider to
develop a method to predict the quasi-periodicity. Our aim
is not to detect periodicity from time series data [6]–[11], but
to predict the quasi-periods.

Predicting quasi-periods from observations of various phe-
nomena brings many benefits to us, including the examples
given below:

• Development of optimal dosage plan considering bio-
logical rhythm, active drug development with few side
effects [2].

• Increase in crop yields due to improved weather forecast
accuracy.

• Improvement of the accuracy of anomaly detection when
the cycle deviates.

• Improvement of female’s quality of life by predicting
menstrual cycle length and ovulation period.

Therefore, development of a method to predict quasi-periods
accurately is an important issue, and its demand is rising in
recent years.

State Space Model (SSM) can be applied to model time
series data which shows nonlinear variations. Several methods
have also been proposed to model time-series data of quasi-
periodic phenomena targeted by this study. In [12], a model
is presented in which the observed values are represented
by the sum of trigonometric functions, and their phase and
amplitude follow the probability differential equation. The
previous studies [13], [14] introduce a model that decomposes
seasonal components of observation into a sum of several
small parts representing a specific periodic variation, each
of which also follows a second-order stochastic difference
equation. However, in these models, the target of prediction
was just an observation value, and prediction of the period
itself was not considered. We consider that studies to estimate
the period sequentially have been also conducted sufficiently.

In this study, we explicitly introduce the hidden phase
in the quasi-periodic phenomena, and model both the phase
and the observation with the Gaussian Process State Space
Model (GP-SSM) [15]–[17]. GP-SSM is a class of SSM that
the characteristics of nonlinearity and smoothness are repre-
sented via Gaussian process [18]. To express fluctuations of the
phase hidden in the quasi-periodic phenomenon, we introduce
the phase as a latent variable in this study. Furthermore,
we estimate the phase sequentially from observation data
obtained sequentially, and consider a method to predict the
period with fluctuation, that is, the quasi-period. The feature
of GP-SSM considered in this study is that the values of the
state variable, hyperparameters of GP, and the joint posterior
distribution of each function for SSM are estimated based on
Particle Markov Chain Monte Carlo (Particle MCMC) [19].
To investigate the effectiveness of the proposed method, we
conducted experiments for prediction of the next menstruation
start date and evaluated the performance by the mean square
error of prediction.

This paper is organized as follows: Section 2 describes
modeling method and sequential prediction method based on
GP-SSM. Section 3 describes the results of the prediction
experiments and Section 4 discusses these results. Finally
Section 5 summarizes the paper.

II. MODELING OF QUASI-PERIODIC NONLINEAR
PHENOMENA

In modeling quasi-periodic nonlinear phenomena, we as-
sume the existence of a potential phase for such phenom-
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ena [20]. The introduction of the phase makes it possible to
quantitatively evaluate where the current observation is located
in one cycle. Furthermore, we consider fluctuation of the phase
as a probabilistic phenomenon and introduce phase as a latent
variable (state variable) of the probabilistic model to express
uncertainty. We apply SSM to mathematically describe the
dynamic change of phase and time evolution, and formulate it
using the phase as a state variable of SSM. In this study, we
specifically target the basal body temperature and menstrual
cycle length of female. Based on the formulation by SSM,
the sequential prediction method of the next menstruation
start date can be derived [20]. Furthermore, in this study, we
propose an approach using GP-SSM.

A. Formulation by state space model

Let yn be the temperature observed on the n-th day, and let
θn be the phase of the n-th day. Suppose that the phase θn
takes a value between 0 and 1. Moreover, it is assumed that the
phase increases monotonically and that the phase is reset to 0
by taking θn = 1 when the n-th day is the menstruation start
date. Based on the above assumptions, the time evolution with
uncertainty of the observed variable yn and the state variable
θn is described by the following equations:

θn = (θn−1 + ϵn) mod 1, ϵn ∼ gamma(α, β) (1)
yn = g(θn) + σn, σn ∼ N (0, σ2) (2)

g(θn) = a0 +
M∑

m=1

[am cos(2mπθn) + bm sin(2mπθn)] (3)

where gamma(α, β) represents a gamma distribution with
shape parameter α and scale parameter β. The parameters
{α, β, σ, a0, a1, · · · , aM , b1, · · · , bM} can be estimated by us-
ing the maximum likelihood method [20].

The increment of the phase added from the n day to the
(n+ r)-th day (r ≥ 1) is defined by the following formula.

∆(r | n) def
= θn+r − θn (4)
= ϵn + ϵn+1 + . . .+ ϵn+r, (5)

where ∆(r | n) is also a random variable and follows
gamma(rα, β) because of the reproducibility of the gamma
distribution. Assuming that the phase of the n-th day is θn, the
increment of the phase required to reach the next menstruation
start date is 1 − θn. The probability of the event that the
next menstruation start date occurs at the (n + r)-th day
is calculated by the following formula as the conditional
cumulative distribution function F (r | θn) by the integral of
the density function.

F (r | θn)
def
= P ((∆(r | n) ≥ 1− θn))

=

∫ ∞

1−θn

gamma(x; rα, β) dx

= 1−G(1− θn; rα, β) (6)

The cumulative distribution function of the above gamma
distribution is represented by G(·; rα, β). Based on the condi-
tional cumulative distribution function, the conditional proba-
bility mass function p(r | θn) is calculated as

p(r | θn)
def
= F (r | θn)− F (r − 1 | θn). (7)

By combining the conditional probability mass function with
the filter distribution p(θn |y1:n), the predictive distribution of
the menstruation start date can obtained by

p(r | y1:n) =
∫
p(r | θn)p(θn | y1:n) dθn (8)

Then, from r̂ of the following equation giving the maximum
value of the predictive distribution, the predicted value of the
next menstruation start date starting from the n-th day is given
as the (n+ r̂)-th day.

r̂ = argmax
r

p(r | y1:n) (9)

B. Formulation by Gaussian process state-space model

On the basis of the formulation described in the previous
section, the basal body temperature can be modeled by GP-
SSM:

f(θ) ∼ GPf (mf (θ), kf (θ, θ
′;Θf )) (10)

θn = (f(θn−1) + ϵn) mod 1, ϵn ∼ gamma(α, β)

(11)
g(θ) ∼ GPg (mg(θ), kg(θ, θ

′;Θg)) (12)
yn = g(θn) + σn, σn ∼ N (0, σ2) (13)

In this study, the mean function of the system model is given
by mf (θ) = θ. The mean function of the observation model
is given by the Fourier series of order M :

mg(θ) = a0 +
M∑

m=1

[am cos(2πmθ) + bm sin(2πmθ)] (14)

In this study, the coefficients am and bm are estimated by
using discrete Fourier transform.

RBF kernels were applied to the kernel functions of the
system model and the observation model.

kf (θ, θ
′;Θf ) = s2f exp

(
− (θ − θ′)2

2lf

)
(15)

kg(θ, θ
′;Θg) = s2g exp

(
− (θ − θ′)2

2lg

)
(16)

where Θf = {sf , lf}, Θg = {sg, lg} are the corresponding
hyperparameters.

In the SSM formulation [20], the state transition function
and the observation function were described by definite hy-
perparameters. The hyperparameters were determined by a
grid search and Akaike Information Criterion (AIC) [21]. The
observation function g(·) is the sum of trigonometric functions
which approximates observation data. Linearity is assumed
for the state transition function. In general, it is necessary
to evaluate models with various possible functions, including
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Fig. 1: Example of predictive distribution.

the number of terms of these trigonometric functions and
the coefficients, and also necessary to select the final model
based on a criterion. The proposed method does not require
such model selection thanks to the characteristic of GP. We
expect the proposed model will flexibly capture nonlinearity
in various phenomena.

Given the observation y1:n up to the n-th day, according to
the particle MCMC method, we can obtain the set of i.i.d.1

samples {θ(i)n }Ni=1. The following empirical distribution can
be calculated using these i.i.d. samples:

pN (θn | y1:n) =
1

N

N∑
i=1

δ(θn − θ(i)n ). (17)

Since the above equation can be regarded as an approximation
of the filter distribution p(θn | y1:n), plugging it into the right
hand side of Eq. (8), we can calculate an approximation of
the predicted distribution as Monte Carlo integration.

p(r | y1:n) ≃ 1

N

N∑
i=1

p(r | θ(i)n ) (18)

Finally we can obtain the predicted value by Eq. (9).
The calculation of the prediction error of the next men-

struation start date was performed as follows: First, the value
of the predictive distribution is evaluated for each index r
of the predictive distribution sequentially over all evaluation
data. As shown in Fig. 1, the probability mass function of
the predictive distribution can be obtained, and the predicted
value is given from the index r̂ which gives the maximum
value. Figure 2 shows examples of sequential prediction and
predictive distribution over days. A sequential prediction is
performed by moving the entire distribution to the left. In the
example shown, since the sequential prediction is close to the
true prediction, the prediction error is reduced as a result. In
Fig. 2 (d), we can see that the right tail of the prediction
distribution is raised. This fact reflects the situation that the
prediction for the next month is about to start.

III. EXPERIMENTAL EVALUATION

To demonstrate the effectiveness of the proposed method,
we conducted evaluation experiments about prediction of

1Independent and Identically-Distributed.

TABLE I: Constraints imposed on the database to extract
training/evaluation data and corresponding reduction rate.

Condition Reduction rate
Days of non-registered ≤ 3. 92.0%

Date skip is up to 2 days 96.7%
Average menstrual cycle length less than 60 days 1.4%

Average menstrual cycle length is more than 15 days 13.5%
Minimum menstrual cycle length less than 15 days 80.4%

the next menstruation start date from female’s basal body
temperature data.

A. Experimental Condition

1) Dataset: QOL Corporation (Ueda, Japan) maintains the
database which contains the daily body temperature data of
each subject. The body temperature and menstruation onset
data was collected via a website called Ran’s story, which
is a website that allows registered users to upload their self-
reported daily BBT and days of menstruation onset to QOL
Corporation’s data servers. All users of Ran’s story agree to
the use of their data for academic research. If the number of
registered data is tiny, e.g., less than one month, it is difficult to
evaluate the prediction method because sufficient amounts of
data cannot be secured for inference and evaluation. Although
the inference algorithm for the proposed method is based
on particle MCMC, it is also challenging to perform model
inference for a large number of subjects even if using parallel
computing. Therefore, to secure sufficient data for inference
and evaluation, we selected subjects whose number of body
temperature registrations was one year or more. The reduction
rate for the entire database at this time was 76.7%.

Furthermore, the number of subjects was reduced by impos-
ing the conditions shown in Table I. The reason for imposing
the restriction is to guarantee the continuity of the observation
as much as possible. The reason for the high reduction rate
of the minimum menstrual cycle includes those due to date
jumps. Finally, we selected body temperature data from 17
subjects for 30-44 years. Those met all these conditions. In this
experiment, we used continuous half-year data for inference
and another consecutive half-year data for evaluation. They
did not overlap each other.

2) Settings of parameters: Based on the result of the
preliminary experiment, the number of MCMC iterations was
set to 15,000. The number of particles was set to 10,000 for
both inference and prediction. The variance of the Gaussian
distribution of Eq.(13) was set by preliminary experiments to
σ2 = 0.2, and the initial value of the state variable was 0.0.
For the observation, the order M of the Fourier series was set
to 3.

Parameters of the gamma distribution of Eq.(11) were
estimated by the Particle MCMC method. In the experiment，
α was sampled from the uniform distribution [1.1, 1, 000] and
β was calculated by using the following constraint

αβ =
1

T
, (19)
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(a) 23 days before next menstruation (b) 16 days before next menstruation

(c) 9 days before next menstruation (d) 2 days before next menstruation

Fig. 2: Example of sequential prediction.

where T is the averaged menstrual cycle length for each
subject. By imposing the above constraint, we can expect
that the phase reset occurs at T intervals on average. This
is because the mean of gamma distribution is given by αβ
and the expectation can be calculated when we calculate a
sequence of phase values from n = 1 to n = T by using
Eq.(11) as follows:

E[θ] = E

θ0 + T∑
i=1

ϵi

 =
T∑

i=1

E[ϵi] =
T∑

i=1

αβ (20)

= T · 1
T

= 1 ≡ 0 (mod 1), (21)

where θ0 = 0.
For estimation of GP, we set prior distributions for hyper-

parameters of GP as follows: sf ∼ [1.0 × 10−3, 3.0], lf ∼
[1.0×10−3, 1.0×103] for kf and sg ∼ [1.0×10−3, 5.0], lg ∼
[1.0× 10−3, 1.0× 103] for kg .

3) Comparative methods: We adopted two methods for
comparison:

• Method 1: Tav days after the previous menstruation start
date is used as the prediction of the next menstruation,
where Tav is the average menstrual cycle length calcu-
lated the evaluation data for each subject.

• Method 2: 29 days after the last menstrual period. In
fact, calculated from 37,148 menstrual cycles of 3,997
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Fig. 3: Box plot of prediction error.

subjects, the mode was 29 days.

B. Experimental results

Box plots of the prediction error are shown in Fig 3. The
horizontal axis shows how many days ago the forecast was
made from the menstruation start date of each month. That
is, the right side of the figure shows the prediction error
when approaching the next day of the menstruation start date.
The vertical axis is the mean squared error (MSE), which is
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Fig. 4: Box plot of standard deviation of menstruation cycle
for each group where “Total” means all subjects.

the prediction error that is summed up and averaged at each
predicted time point. In the figure, the average values of the
prediction errors for Method 1 and Method 2 are also plotted.
From figure 3, we could not find significant improvement
viewed over the whole subjects. In the next section, we will
consider this result and the cause.

IV. DISCUSSION

From the results shown in the figure 3, the prediction error
is large at two days before the next menstruation start date, so
the subjects were classified into the following four groups in
order of increasing error from group 1 based on this prediction
error.

• Group 1: Prediction error less than 25 percentile (# of
subjects = 4)

• Group 2: Prediction error 25 percentile or more and less
than 50 percentile (# of subjects = 4)

• Group 3: Prediction error 50 percentile or more and less
than 75 percentile (# of subjects = 4)

• Group 4: Prediction error 75th percentile or more (# of
subjects = 5)

To grasp the relationship between prediction error and the
menstrual cycle length, we calculated the standard deviation of
the menstrual cycle length for each group. The result is shown
in figure4. Clearly, in group 1 and 2, the variation was small
with a small prediction error. Conversely, in group 3 and 4, the
variation was considerable with a significant prediction error.
For those two groups, it is suggested that the proposed method
could not absorb a fluctuation of the cycle and therefore could
not predict the period accurately.

Fig.5 shows the re-aggregation of the results in Fig.3 for
each group. For Group 1, about one-fourth of the whole
subjects, the reduction of prediction error was obtained by
using the proposed method. However, enough improvement
was not obtained for group 3 and 4. In the formulation of
the proposed method, the phase is reset to 0 according to
the menstruation start date. Therefore, the prediction error is
affected by the variation of menstrual cycle length, especially
for those two groups. From Fig.5, it can be observed that the

standard deviation of the menstrual cycle length is about 5
days in group 3 and about 10 days in group 4. For those two
groups, the proposed method could not absorb the fluctuations
of the cycle and could not predict the cycle accurately.

Observing the estimated state transition function, the trend
was organized as follows:

• Group 1: The state transition function is linear with little
change from the initial value.

• Group 2 and 3: Although it is a monotonically increasing
function, the gradient is not steep compared to the group
1, and the gradient itself tends to decrease gradually. The
phase is reset before the value reaches 1.

• Group 4: There are some things that decrease rather than
increase the phase.

Figures 6(a) to 6(d) show the experimental results of represen-
tative subjects extracted from each group as examples. Each
plot shows (i) average prediction error of menstruation start
date, (ii) sequential prediction value of menstruation start date,
and (iii) estimated mean function. For (ii), the estimated values
at each time step are shown as “Ground truth” and “Proposed”
(estimated value obtained by the proposed method). In group
2 and 3, the prediction error tended to increase gradually as
the next menstruation start date approached. This is because
the entire predictive distribution gradually stagnates at the
same location as the phase increase gradually decreases. For
subjects in group 4 whose phase decreased, the prediction
error increased significantly because the whole predictive
distribution was move in reverse direction.

In summary, the proposed method cannot cope with large
fluctuation of cycle length. However, in the case that the
fluctuation is within 5 days, the proposed method can predict
the cycle length.

V. CONCLUSIONS AND FUTURE WORKS

In this study, we have modeled quasi-periodic non-linear
phenomena by Gaussian process state-space model (GP-SSM)
and developed a method to predict quasi-periodicity sequen-
tially. Assuming the existence of a phase hidden in the
phenomena, we have introduced it as a latent variable. State
space model describes the time evolution of state uncertainty.
Furthermore, GP-SSM considered in this study has been
derived by expressing the state transition function and obser-
vation function in the state space model based on GP. Model
parameters can be estimated based on the particle MCMC
method. The quasi-periodic sequential prediction method is
formulated by approximating the predicted distribution at the
start of the next cycle.

Compared with the method of predicting the next menstrua-
tion date as 29 days after the last menstruation (i.e., a calendar
calculation method), we confirmed that the proposed method
improved the prediction accuracy. As for menstrual cycle,
we should consider that trends may differ from generation
to generation, so more robust prediction will be possible
by classifying data by age and performing model estimation
on each. Introducing a prior knowledge according to the
characteristics of the body temperature data and menstrual
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(c) Group 3
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Fig. 5: Box plot of prediction error for each group.

cycle length will be useful. For instance, to capture variations
of the cycle length, we can introduce a mixture of distributions
which represent standard and non-standard menstrual cycles.
We also consider that the prediction accuracy will be further
improved if statistical information such as the mode value of
the cycle from about 4,000 people of the QOL database, is
incorporated into the formulation of the model effectively.
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