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Abstract—The output from most of the Automatic Speech
Recognition system is a continuous sequence of words without
proper punctuation. This decreases human readability and the
performance of downstream natural language processing tasks on
ASR text. We treat the punctuation prediction task as a sequence
tagging task and propose an architecture that uses pre-trained
BERT embeddings. Our model significantly improves the state
of art on the IWSLT dataset. We achieve an overall F1 of 81.4%
on the joint prediction of period, comma and question mark.

I. INTRODUCTION

In recent years, speech recognition systems have achieved
commendable performances, e.g., Word Error Rates (WER)
at 5.5% on English conversational telephone speech [1] [2].
However, most of the current systems produce transcripts that
are usually not punctuated. Restoring correct punctuation is
essential as it can improve the readability of the transcripts
[3] and the performance of downstream tasks like machine
translation [4], information extraction and name entity recog-
nition [5]. Also, most NLP models are trained on text with
the inherent assumption of it being properly punctuated.

In last two decades, a substantial amount of research has
been done on punctuation prediction and related tasks, e.g.,
sentence boundary detection and sentence unit detection. The
works and approaches used are usually divided based on the
features. There are approaches like [6]–[12] that use both
prosody as well as lexical cues, while most use, only lexical
features. This is because written data with punctuation is a
lot more abundant as compared to audio data with processed
prosodic features. Also, prosody cues are inconsistent and may
vary from person to person [13]. Due to the above reasons,
we too retain from using prosody cues in our model.

In this work, we treat the punctuation prediction task as a
sequence labelling task, where label of each word indicates the
punctuation present after the word. We proposed a two-layer
model. The first layer is a pre-trained language representation
model, i.e., BERT - Bidirectional Encoder Representations
from Transformers - introduced by Devlin et. al. [14]. The sec-
ond layer consists of a bidirectional Long Short Term Memory
and a linear Conditional Random Field (CRF) Classifier for
prediction.

Unlike pre-trained word embeddings which have same
values in every situation, a language representation model
likes BERT builds its representation vectors by considering
the neighbouring context. Thus, each generated embedding
captures the correct semantic meaning provided by the given
example. Furthermore, BERT has the advantage of capturing

deep representation of both left and right context, contrary
to previous language representations that are unidirectional or
shallow bidirectional. BERT has also shown to give state-of-
the-art results when being applied for tasks such as question
answering and language inference by just using fine tuning
techniques and one additional output layer [14]. These advan-
tages of BERT motivated us to apply it for our punctuation
prediction task. The implementation of our model is made
publicly available for reproducibility1.

The rest of this paper can be summarized as follows. Section
2 discusses the related work. In section 3, we introduce our
proposed architecture. Experiments and results are presented
in section 4. We end with our conclusion and future work in
section 5.

II. RELATED WORK

A. Punctuation Prediction for ASR Transcripts

Punctuation prediction for ASR transcripts and its related
tasks have a long history of development. One of the earliest
works on this topic is by Stolcke et al. [6]. The authors create
an hidden event language model to estimate the conditional
probability of events given words, where the events are sen-
tence boundaries. Along with that they use a prosodic model
that utilizes decision trees to model the conditional probability
distribution of events given prosodic cues and words recog-
nised from audio features. Various prosody features that are
useful for sentence unit detection are extensively discussed in
[8].

Liu et al. [7], investigate various approaches to model the
task that include Hidden Markov Model (HMM), Maximum
Entropy and Conditional Random Fields (CRF) models, they
find discriminative models perform better in general. Specifi-
cally, CRF models generally outperform previous models be-
cause they utilize global sequence information for making the
decision. Authors in [15] use a two layer factorial conditional
random fields that learns the joint probability of predicting
punctuation together with the sentence type.

Punctuation prediction can also be transformed into other
similar NLP tasks, e.g., transition based parsing [16], [17] and
machine translation [4]. In [4], authors assumes the source
language does not contain any punctuation and the target
language is the same language with punctuation. Other works
that use this approach include [18] and [19].

1https://github.com/panda-baba/bert punct
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Majority of recent works in punctuation prediction task
are based on deep learning approaches. For example, in [11]
authors use word vectors as the only features and experiment
with deep neural network (DNN), 1-dimensional convolution
neural network (1D-CNN) and 2-dimensional convolution
neural network (2D-CNN) layers to predict the punctuation
classes. Tilk et al. [20], make use of bidirectional GRU
architecture with late fused attention mechanism. They train
the network in two stages; the first stage uses only textual
features while the second stage takes into account pause
durations and is trained on a smaller dataset. In [21], the
authors also investigate the use of BiLSTMs for the task of
punctuation prediction. They use a multilayer BiLSTM and
append that with a CRF to make predictions. Work in [22],
tries to use a hybrid architecture of CNN and BiLSTM for
the same task. Further, Wang et al. [23] are the first ones to
use transformer architecture for punctuation restoration. They
treat it as a machine translation task where the decoder is
modified to have two outputs. In our proposed models, we
use the encoder part of the transformer which is significantly
different than the above works.

B. Language Representation Models

Deep learning based language models have been very
popular in recent years due to their superiority to traditional
statistical n-gram language models. Various kind of deep
neural network architectures and tuning methods have been
proposed on the topic of language representation models
including works presented in [24]–[28] and more recently in
[14].

In [24] Dai et al. presented the idea of pre-training the
whole neural network along with the hidden states of the
LSTM layers using language modeling and fine-tuning it for
a supervised task using labeled data. They concluded that
using this pretrained weights helped stabilize the learning
in LSTM recurrent networks. In [25], the authors used the
final hidden state of pretrained stacked LSTM language model
as a contextual embedding for a word. They reasoned that
this method generated better embeddings as it captured the
semantic and syntactic role of words, keeping in mind the
context. They augmented the LM embeddings to their se-
quence tagging architecture and achieved 91.93 % F1 for the
CoNLL 2003 Name Entity Recognition task and 96.37 % F1
for the CoNLL 2000 Chunking task. The authors in [26] used a
similar approach but instead of language modelling they used
machine translation task for pre-training.

Unlike the previous works that used top layers of pretrained
language models, Peters et al. [27] use weighted sum of inter-
nal states present at every layer in their model. The weights
being learnt while fine-tuning the embeddings for a particular
task. It enabled the downstream task to give more weight to
the hidden representation that captures the semi-supervision
signal most useful to it. This constructed richer representation
embeddings called the ELMo embeddings, which improved
the state of the art across six diverse NLP tasks. Universal
Language Model Fine-tuning (ULMFiT) introduced by Ruder

et al. [29] describes a fine-tuning method that uses techniques
like discriminative fine-tuning, slanted triangular learning rates
and gradual unfreezing to enable faster transfer learning of
pretrained language models to other NLP tasks.

Further, the transformer architecture introduced in [28] by
Vaswani et al., improved the state of the art result for machine
translation. They used the attention mechanism that takes into
consideration the interaction between time steps and the whole
sequence before making the predictions. This way it captures
the time dependency better than LSTMs. Researchers started
using transformer or self-attention for other NLP tasks and it
gave promising results [30], [31].

In [14], the authors combined the ideas of using pre-
trained neural network weights [24], context-sensitive features
[27], slanted triangular learning rates [29] and transformer
architecture with attention mechanism [28], and came up with
the language representation model BERT. BERT achieved the
state of the art for eleven NLP tasks. It is better than other
language representation models [27], [32] because it learns
deep bidirectional representations by taking into account both
left and right context in every neural layer. It achieves this
by changing the language modeling objective. Instead of the
normal objective of predicting the next word, it masks some
of the words randomly in the input and uses the model
conditioned on the left and right context to predict the masked
word. The model also jointly trains on the binarized next
sentence prediction task, i.e., given two sentences A and B
as the input the model trains to predict if sentence B should
succeed A or not. The architecture of the model is composed
of multi-layer encoder from the transformer [28]. BERT uses
the encoder part while the OpenAI GPT [32] uses the decoder
part with masked tokens, and hence is conditioned only on
the left context. Ablation studies presented in [14] show that
the bidirectional aspect of the BERT is what makes it perform
better than OpenAI GPT.

III. MODEL ARCHITECTURE

In this work, we propose a two layered architecture. The first
layer is the pretrained BERT model that produces the BERT
embeddings. It is followed by a hybrid biLSTM-CRF layer that
finally outputs the predicted labels. The overall architecture is
depicted in Figure 1.

A. BERT embedding

BERT model contains multiple encoding layers with pre-
trained weights, of the transformer [14] stacked together. The
pre-trained weights are learnt by training it on masked word
prediction and binarized next sentence prediction, language
modelling tasks. Each encoder layer comprises of multi-head
self attention and feed forward networks. Attention layer
performs the mapping of key-value pair and a query to an
output. The output is calculated based on a weighted sum of
values where the weights are calculated using alignment score
between keys and queries. The attention used in [28] is the
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Fig. 1. Proposed Model Architecture

Scaled Dot-Product Attention which is calculated as:

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V (1)

where Q, K and V are the query, key and value matrices,
respectively and dk is the dimension of key vectors. In case
of self attention, the query, key and value are equal to the
output of the previous encoder layer.

Multi head attention considers multiple representation sub
spaces in parallel. This is done by linearly projecting keys,
values and queries by different learnt matrices and performing
attention on each one of them. The resultant matrices are
finally concatenated and again projected. The equations for
multi head attention can be summarized as:

Multihead(Q,K,V ) = Concat(head1, ....,headh)W
O

(2)

headi = Attention(QWQ
i ,KWK

i ,V WV
i ) (3)

where WQ
i ,W

K
i ,WV

i ∈ Rdinp×dout and WO ∈
Rhdout×dinp , here dinp is the initial dimension of key, value
and query, dout is the projected dimension and h is number
of heads. After that, the result is passed through a feed
forward network to get the final output for the encoder layer.
An additional point to note is that the multi-head and feed
forward networks have residual connections around them, and
are always followed by layer-normalization.

In our task, the weights of the encoder layers are also up-
dated along with the other layers during the back-propagation,
this fine-tunes BERT embeddings for our task.

B. BiLSTM layer

Recurrent neural nets that allow cyclic connections in neural
nets have been used widely in the NLP domain. These cyclic
connections change the state of the RNN cell recursively
and helps them to learn features from entire past sequences.
However, a simple recurrent unit is not able to capture longer
contexts due to the vanishing gradient problem. LSTM intro-
duce in [33] alleviates the problem by having additional gates
and cell state to control the flow of information. The basic
equations governing the output of a basic LSTM cell are as
follows:

ft = σ(Wf [ht−1, xt]+ bf ) (4)
it = σ(Wi[ht−1, xt]+ bi) (5)

c
′

t = tanh(Wc[ht−1, xt]+ bc) (6)

ct = ft ∗ ct−1 + it ∗ c
′

t (7)
ot = σ(Wo[ht−1, xt]+ bo) (8)

ht = ht ∗ tanh(ot) (9)

In our work, we use a bidirectional LSTM layer comprising
of this basic LSTM cell on top of the BERT embedding. It
models the sequential dependency further by processing the
sequence word by word. The forward LSTM process the se-
quence from left to right while the backward LSTM processes
it in the opposite direction. This makes the prediction more
accurate by conditioning it on both past and future contexts.

C. CRF Classifier

CRFs have already been successfully used for sequence
labeling tasks in NLP. The hybrid LSTM-CRF model is shown
to achieve high performance for name entity recognition, POS
tagging and chunking tasks [34] [35].

CRF is a discriminative model, i.e, it tries to learn the
conditional probability of output given the input rather than
the joint probability. This is helpful because we can ignore
the structure and relationships between the input variables,
entirely. Along with that, it is composed of feature functions
that can take into account overlapping features.

Our model uses linear chain CRF, which is the most com-
monly used version of CRF. Linear chain CRF has a transition
matrix that captures previous and current step dependencies
for making the tagging decision unlike the cross entropy
classifier that makes independent decision for each label. The
loss of CRF layer is just the negative log likelihood of the
probability of the correct sequence of labels and we use the
Viterbi decoding for finding the correct punctuation labels at
the prediction time.

IV. RESULTS AND EXPERIMENT

A. Dataset

We evaluate our model on the monolingual English punc-
tuation restoration task and use the IWSLT20122 dataset for
our experiment. It consists of TED talks transcribed in several

2http://hltc.cs.ust.hk/iwslt/index.php/evaluation-campaign/ted-task.html
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TABLE I
RESULTS ON IWSLT DATASET

Model Period Comma Question mark Overall
Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

T-BRNN 72.3 71.5 71.9 64.4 45.2 53.1 67.5 58.7 62.8 68.9 58.1 63.1
T-BRNN-pre 73.3 72.5 72.9 65.5 47.1 54.8 70.7 62.8 66.7 70.0 59.7 64.4
Word CNN 75.8 95.5 84.6 56.1 60.4 58.2 40.8 55.7 47.1 65.8 77.7 71.3
SAPR 96.7 97.3 96.8 57.2 50.8 55.9 70.6 69.2 70.3 78.2 74.4 77.4
Bert-PunctBASE 82.6 83.5 83.1 72.1 72.4 72.3 77.4 89.1 82.8 77.4 81.7 79.4
Bert-PunctLARGE 84.9 83.3 84.1 70.8 74.3 72.5 82.7 93.5 87.8 79.5 83.7 81.4

languages that are normally used for evaluating Automatic
Speech Recognition, Speech Language Translation and Ma-
chine Translation tasks.

We take the data from the machine translation track and use
the same training, development and test sets, as the previous
works. After preprocessing, we get 2.1M and 290k tokens in
the train and dev sets, respectively.

B. Preprocessing

To fine-tune the pre-trained BERT language representation
model, the input is preprocessed in a certain way. The prepro-
cessing of an input example along with the labels is shown in
Figure 2. As can be seen every input example is prefixed with
a [CLS] token. The hidden state corresponding to this token
learns the encoded representation for the whole input sentence.
Tokens are converted to WordPiece embeddings that capture
sub-level word information and generalize well to rare tokens.
Segment embeddings and [SEP] token is used to identify
different parts of an input example. Since our input example
has just one part we use zero vector for segment embedding
and only append [SEP] at the end of every example.

For punctuation prediction, one input example is typically a
paragraph and the sequence length for our model is fixed. So
we split our examples into two or more sequences if they are
more than this length, ensuring that each input sequence starts
with a new sentence i.e., after end sentence punctuation labels.
For examples less than the sequence length we pad them with
the [PAD] token. We maintain an input mask to ensure that
the padded tokens are not accounted in the loss.

Our model predicts only comma, question mark and period.
Other end sentence punctuation symbols that exist in text
are mapped to period. Words that don’t have punctuation
following them are given a different class. In addition we have
two more classes, one for WordPiece tokens that are part of
single word and the other for [PAD] tokens.

The segment, WordPiece and positional embeddings are
added together to form the input for the pre-trained BERT
model. We don’t want our model to learn to predict sentence
end punctuation classes using capitalized word cues, hence we
use the pre-trained uncased version of BERT.

C. Experimental Setup

For training, we use Adam optimizer with learning rate of
2e-5, beta 1 = 0.9, beta 2 = 0.999 and the weight decay rate
of 0.01. Initially we do a learning rate warm-up for 0.1 percent
of the training steps and then use exponential decay with decay

Fig. 2. Pre-processed example for BERT model

steps set to 2000 and decay rate set to 0.9. We perform gradient
clipping with threshold set to 2. The model is trained for 5
epochs with batch size of each training step equal to 8. The
dimension of the BERT embedding is 768 for the base version
and 1024 for the large version. The dimension of the hidden
state of BiLSTM is set to 200. The number of output classes
is 6 and the sequence length is set to 128. We use a dropout
of 0.1 for all the layers.

D. Baseline Models

We compare our model with the previous works that achieve
good performance on the task of punctuation restoration.

• Word CNN is a character based model that uses convo-
lutions over character embeddings to extract features and
finally labels them using a CRF classifier [36].

• T-BRNN uses a bidirectional LSTM with late-fused at-
tention mechansim.

• T-BRNN-pre is the same model using pre-trained word
embeddings [20].

• SAPR treats the task as a machine translation task. It uses
the transformer architecture with the decoder having two
output labels [23].

E. Results

We refer to our model as Bert-Punct. We have two versions
of the model, base and large corresponding to the two pre-
trained BERT embeddings. Similar to the other models, we
predict the three most common types of punctuation symbols:
period, comma and question mark. In addition to that our
model is trained on examples consisting of multiple sentences,
hence it learns to predict period and other end punctuation
classes solely based on syntactic and semantic cues.

For each of the model, we report the overall as well as
class-wise precision, recall and F1-measure metrics.

As can be seen from Table I, our both models significantly
outperform all the previous models on the IWSLT2012 dataset.
For the base version, we achieve an overall improvement of
2% in F1 as compared to the previous best model, SAPR.
While for the large, we improve further, 4% over SAPR. This
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is due to the high recall capacity of our model. The recall
values being 7.3% and 9.3% above the previous best model,
for the base and large version, respectively. The recall values
for the minority classes are also high, this suggests that our
architecture is also able to handle the imbalance of classes.

While looking at individual classes, we can see that the
SAPR performs better on predicting period than BERT-Punct.
However, both of our models significantly outperform SAPR
on other classes.

The high overall F1 can be mainly attributed to our model’s
ability to distinguish and recall commas better than other
models, while not sacrificing the performance for other classes.
There is an absolute improvement of 14.9%, 21.6% and 16.4%
in precision, recall and F1 values for comma, in our base
version with respect to SAPR. For the large version, it is
13.6%, 23.5% and 16.6%. Also, our model’s ability to predict
question mark is far better than SAPR. Further, BERT-Punct
large version, has higher values for periods and question marks
but has a lesser value of precision for the comma punctuation
class than the base version.

Notice that the SAPR and Bert-Punct both use the trans-
former architecture with modifications and achieve better
results. This suggests that self-attention architectures are better
than recurrent architectures for the task of punctuation predic-
tion.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a sequence labelling architecture
that uses the pretrained language representation model BERT.
We fine tuned BERT for our task and with small amount of
training achieved state of the art results. Experiments per-
formed show that our model is significantly better at predicting
the less common punctuation classes than the other models.
We added a simple hybrid of LSTM-CRF on top of the pre-
trained model and achieved an overall F1 of 81.4% (absolute
improvement of 4%).

For the future work, we will modify the model to include
prosody features. Along with that, we will train it on other
languages and multilingual text. This would help us check the
robustness of our model. We would also like to explore the task
as a machine translation task that uses pre-trained transformer
model.
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