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ABSTRACT

Deception is an intended action of a deceiver to make an inter-
rogator believe something is true (or false) that the deceiver
believes to be false (or true) as a purposeful mechanism to
share a mix of truthful and deceptive experiences when be-
ing asked to respond to questions. Conventionally, automatic
deception detection from speech is regarded as a recognition
task modeled only using the deceiver’s acoustic cues and does
not include temporal conversation dynamics between the in-
terlocutors, i.e., ignoring the potential deception-related cues
when the two interlocutors coordinate such a back-an-forth
interaction. In this paper, we propose a joint learning frame-
work to detect deception by simultaneously considering varia-
tions and patterns of the conversation using both interlocutor’s
acoustic features and their conversational temporal dynamics.
Our proposed model achieves an unweighted average recall
(UAR) of 74.71% on a recently collected Chinese deceptive
corpus of dialog games. Further analyses reveal that the in-
terrogator behaviors are correlated to the deceivers deception
behaviors, and including the conversational features provides
enhanced deception detection power.

Index Terms— deception, conversation, BLSTM, atten-
tion, speech acoustics

1. INTRODUCTION

Deception behavior is part of human nature in daily conver-
sations and interactions. Investigating objective methods to
accurately detect deceptive events in life has attracted atten-
tion especially among psychologists [1], law enforcement of-
ficers [2], and employers [3]. However, research has shown
that human is not good at identifying deception [4], even for
experienced experts such as police officers, prosecutors, and
judges [5, 6], and the influence of personality factors in the
deception detection ability has also been indicated [7]. Be-
ing a highly challenging task for humans, numerous research
has examined automated detection approach based on a va-
riety of measurable signal modality, e.g., word usage in text
messenger [8], face thermal-imaging [9], brain’s neuroimag-
ing [10, 11, 12], electrodermal signals (EDA) [13], electroen-
cephalography [14], and even keyboard stroke patterns [15].

Much of these past research rely on using specialized de-
vices and does not scale easily for daily life applications. The
most direct approach is to analyze verbal and non-verbal cues
during human’s natural communication [16]. In fact, with the
rapid development of technical algorithms of machine learn-
ing to model speech, language, and video signals, emerging
effort has largely concentrated on modeling these direct mea-
surements of communicative behaviors for deception detec-
tion. For example, advancements have been observed in ap-
plications of fake news detection [17, 18], cyber crime detec-
tion [19], and even during employment interviews [20]. In
this work, we focus on modeling speech-based cues for inter-
locutors during dyadic interactions. The verbal cues have also
been shown to be more effective to detect deception than non-
verbal cues, especially during dialog-based interviews [21].

Several works have recently developed algorithms for
speech based deception detection in dialogs. Most of these
works learn to detect deceptive events at either an “utterance-
level”, i.e., a ground truth label is given for every utterance, or
a “question-level”, i.e., a ground truth label is given for every
unit of question. Some exemplary works include: Xie et al.
developed a convolutional bidirection long short-term mem-
ory (CNN-BLSTM) for sentence-level deception detection
using frame-level acoustic features as input [22]; Mendels
et al. used six fully-connected layers deep neural networks
(DNN) to detect sentence-level deception [23]; Levitan et al.
analyzed a set of acoustic-prosodic features in differentiat-
ing truthful and deceptive responses to interview questions
at question-level [24]. Furthermore, during interactions, de-
ceptive behaviors not only are manifested in the acoustic
characteristics but also are evident in the conversational turn-
taking dynamics; for example, Vrij et al. showed that by
examining conversational events, such as hesitations (e.g.,
“um”, “hmmm”), pauses (silent) or latency periods (period of
silence between consequent question and answer utterances),
are helpful for untrained people identify liars [25].

Inspired by these works, we use a BLSTM based neural
network to perform deception detection by simultaneously
learning from deceiver’s acoustic cues and conversational
dynamics between the interrogator and the deceiver in a large
Chinese corpus of dyadic game-based dialogs designed to
study deception behaviors. Our proposed model, with its
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Fig. 1. (a) Turn segmentation (b) Feature-level fusion (c) Deception detection framework

inclusion of conversational temporal dynamics, obtains an
truthful and deceptive classification accuracy of 74.71% un-
weighted average recall (UAR). We further provide analyses
on the importance of these two different types of features
used in indicating deception. The rest of paper is organized
as follows: section 2 describes our database, methodology,
and features design, section 3 includes experimental setup
and results, and we finally conclude with future work.

2. RESEARCH METHODOLOGY

Fig.1 depicts our overall framework used in this work. The
core idea is to model speech behaviors during interactions
with conversational temporal and acoustic features. Temporal
dynamics features contain conversational characteristics, and
acoustic features describe deceivers speech acoustics. These
features are then served as input to the detection network.
The building block of the detection network is based on the
structure proposed in [26], which consists of an initial fully-
connected layer, then a bidirectional long short term memory
(BLSTM) network with attention mechanism, and a final fully
connected layers (BLSTM-DNN) for classification.

2.1. Daily Deceptive Dialogues Corpus of Mandarin

In this work, we use the Daily Deceptive Dialogues Corpus
of Mandarin (DDDM) [27] recently collected at the National
Tsing Hua University, Taiwan. It contains 27.2 hours of au-
dio recordings of dyadic interactions from native speakers of
Mandarin. This corpus includes 96 different speakers (48
male and 48 female) split in pairs into 48 interaction sessions;
the subjects’ age ranges from 20 to 25. There are a total of
7504 utterances in the database (segmented manually).

The database was collected using a protocol involving a
pair of subjects playing games in a spontaneous conversa-
tional setting. One of the subjects played the role of an in-

terrogator with the other player being the deceiver. The in-
terrogator interviews the partner with topics chosen from a
set of three daily activities, such as “have you ever attended
any ball games or competed in ball games?”, “have you ever
attended/participated in any concerts?”, or “have you ever
attended/performed in any club achievement presentation?”
with a goal to identify whether the deceiver was telling the
truth with regard to each of the activities. Deceivers were in-
structed to deceive in their answers in at least one of the three
topics discussed. Both sides of the subjects were provided
with material incentive if they were capable to deceive effec-
tively or identify the deceptive statements correctly.

In this study, we group segmented utterances into “ask-
response” pairs showed in Fig.1(a) because the interrogator
tends to ask questions attempting to identify whether the de-
ceiver is telling the truth or not during the session. We use a
complete “ask-response” pair as a time unit for our feature ex-
traction, and within each pair, we can further categorize them
as an asker-turn or a responder-turn (each turn may include
multiple utterances from the same speaker). This segmen-
tation method serves as the unit for inputting features into
the BLSTM-based framework. This particular choice of unit
is important as it indicates a complete unit that involves a
connected context (i.e., one asking is linked to one respond-
ing, note that if an asking utterance has no related responses,
we ignore those segments in this work). In summary, each
topic is annotated by the deceiver indicating whether he/she
is telling the truth or not, and each of this label includes mul-
tiple “ask-response” pairs.

2.2. Deception Detection Framework

Fig.1 shows our proposed detection architecture. Our decep-
tion detection model is built based on an BLSTM-DNN struc-
ture similar to a previous work [26]. In this work, our goal is
to include both the conversational dynamics and the deceivers
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Table 1. Results on the deception detection for the DDDM database (Aco. and Tem. means acoustic features and temporal
features, respectively.)

Model Human SVM DNN LSTM-DNN BLSTM-DNN

Feature - Aco. Tem. Aco. + Tem. Aco. Tem. Aco. + Tem. Aco. Tem. Aco. + Tem. Aco. Tem. Aco. + Tem.
UAR 55.55% 56.18% 49.12% 56.18% 70.62% 63.91% 71.20% 69.87% 64.19% 72.41% 70.31% 66.02% 74.71%

Deception 40.52% 56.12% 53.96% 54.68% 64.90% 71.20% 66.75% 72.00% 79.68% 70.83% 68.94% 77.91% 74.89%
Truth 70.59% 56.25% 44.44% 57.64% 76.34% 56.62% 75.65% 67.73% 48.69% 73.99% 71.67% 54.14% 74.53%

F1 54.71% 56.19% 49.00% 56.18% 69.65% 63.34% 70.68% 69.65% 62.75% 72.02% 70.03% 64.87% 74.39%
Precision 56.11% 56.18% 49.19% 56.16% 74.45% 64.87% 73.32% 70.25% 68.20% 74.03% 70.53% 68.37% 75.52%
Recall 55.55% 56.18% 49.20% 56.16% 70.62% 63.91% 71.20% 69.87% 64.19% 72.41% 70.31% 66.02% 74.71%

Model Human DT LG RF AdaBoost

Feature - Aco. Tem. Aco. + Tem. Aco. Tem. Aco. + Tem. Aco. Tem. Aco. + Tem. Aco. Tem. Aco. + Tem.
UAR 55.55% 57.60% 54.77% 56.54% 55.83% 47.70% 56.89% 59.36% 54.06% 59.72% 60.78% 52.30% 61.48%

Deception 40.52% 58.99% 59.71% 56.12% 56.12% 48.20% 59.71% 58.99% 54.68% 57.55% 60.43% 69.78% 61.87%
Truth 70.59% 56.25% 50.00% 56.94% 55.56% 47.22% 54.17% 59.72% 53.47% 61.81% 61.11% 35.42% 61.11%

F1 54.71% 57.59% 54.67% 56.54% 55.83% 47.71% 56.86% 59.37% 54.07% 59.70% 60.78% 50.86% 61.49%
Precision 56.11% 57.62% 54.90% 56.53% 55.83% 47.71% 56.96% 59.36% 54.07% 59.70% 60.77% 52.95% 61.49%
Recall 55.55% 57.62% 54.86% 56.53% 55.84% 47.71% 56.94% 59.36% 54.07% 59.68% 60.77% 52.60% 61.49%

acoustic features as inputs to our detection network. We focus
on deceivers acoustic cues and regard deceiver as the target
speaker. The unit for deceiver’s acoustic features is shown in
the bottom of Fig.1 (a), which includes all of the utterances
from the deceiver within a “ask-response” pair. The conver-
sational temporal dynamic features are also computed within
each of these “ask-response” pairs. In the following sections,
we will describe in detail each of these features and our pro-
posed use of the BLSTM classifier.

2.2.1. Utterance-level Acoustic Features

Previous research has shown that deception could be detected
using a variety of prosodic features [24, 28]. In this work,
we extract utterance-level acoustic features using the openS-
MILE toolbox [29] with the emobase config file. It contains
988 acoustic features per utterance. The emobase’s low-level
descriptors (LLDs) contains pitch (fundamental frequency),
intensity (energy), loudness, cepstral (12 MFCC), proba-
bility of voicing, fundamental frequency envelope, 8 Line
Spectral Frequencies (LSF), zero-crossing rate, and finally
delta regression coefficients are computed from those LLDs.
Then, the following functionals are applied to these extracted
LLDs and their delta coefficients to generate the final 988
dimensional feature vector: maximum/minimum value and
respective relative position within input, range, arithmetic
mean (a mean), two linear regression coefficients and linear
and quadratic error, standard deviation (std), skewness, kurto-
sis, quartile 1-3, and 3 inter-quartile ranges. They are further
normalized to each speaker using z-score normalization.

2.2.2. Turn-level Conversational Temporal Features

The design of our conversational temporal dynamics features
showed in Fig.2 is inspired by previous works on conver-

sational analyses [25, 30, 31]. We design 20 dimensional
temporal features based on conversational utterances in each
“ask-response” pair. Interrogator and deceiver are first an-
notated with the role of “Ask” and “Res”, respectively. For
each of the asking/responding turn, we calculate the follow-
ing features (all features are normalized to each speaker using
z-score normalization):

• Duration: the total turn duration (d) of interrogators or
deceivers utterances, denoted as Askd and Resd.

• Duration difference: the duration difference between
each of the interrogator and deceiver turn within a “ask-
response” turn pair. It is calculated as Resd − Askd
and Askd − Resd.

• Duration addition: the sum of Resd and Askd.

• Duration ratio: the ratio between Resd and Askd, and
Askd and Resd.

• Utterance-duration ratio: the reciprocal ratio between
the utterances length (u) and the turn duration (d) , de-
noted as Askud and Askdu, respectively.

• Silence-duration ratio: the reciprocal ratio between the
silence (s) duration and the turn duration, denoted as
Asksd and Askds, respectively.

• Silence-utterance ratio: the reciprocal ratio between the
silence duration and the utterances lengths, denoted by
Asksu and Askus, respectively.

• Hesitation time (h) (Response onset time): the differ-
ence between the onset time of the deceiver utterance
and the offset time of the interrogator utterance, de-
noted as Resh.
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Fig. 2. This figure is the illustration diagram of turn-level
conversational temporal features

• Backchannel times (bt): the number of time that a sub-
ject interrupts his/her interacting partner, denoted as
Askbt and Resbt.

• Silence times (st): the number of time that a subject
produces a pause that is more than 200ms, denoted as
Askst and Resst.

3. EXPERIMENTAL SETUP AND RESULTS

3.1. Experimental Setup

In this work, our basic building block network is BLSTM-
DNN with attention. This model contains two fully-connected
layers (dense layer) with Rectified Linear Unit (ReLU) [32]
activation function, one BLSTM with attention layer, and
finally one dense layer with softmax activation function. The
number of hidden units is 16 in the first dense layer, 8 in
BLSTMs with attention layer, 16 in the last dense layer. All
layers include a dropout layer with 50% drop out rate.

We further compare our approach to a variety of baseline
machine learning models. Specifically, these baseline mod-
els include Support Vector Machines (SVM) [13], ensemble
method (AdaBoost and Random Forest (RF) [33]), linear
model (Logistic Regression (LG) [34]), and non-parametric
learning method (Decision Tree (DT) [35]). We also com-
pare with other deep learning architecture that has been
used for a similar task, such as feedforward neural network
(DNN)[23, 28] and long-short time memory recurrent neural
network (LSTM) [36] with attention mechanism.

Except LSTM model, the rest of the baseline models
are static models. For those models, we compute 15 statis-
tical functionals on each of the extracted turn-level acous-
tic/temporal dynamics features: maximum/minimum value
and respective relative position within input, mean/median

value, standard deviation, first percentile, ninety-ninth per-
centile, the difference between ninety-ninth percentile and
first percentile, skewness, kurtosis, quartile 1, quartile 3, in-
terquartile range. Each of the baseline model is trained after
carrying out a uni-variate feature selection. The LSTM-DNN
with attention model uses a similar architecture as our main
BSLTM-DNN structure. LSTM with attention layer has 16
nodes and no bi-directional. In terms of the DNN baseline
model, the framework is similar to a previous work [28], it
consists of three fully-connected layers with ReLU activation
function, and each layer includes a batch normalization layer
[37] and dropout layer with 50% drop out rate. The number
of hidden units are 16, 8, and 16, respectively.

We use 10 folds cross validation as our evaluation scheme
with the metrics of unweighted average recall (UAR), F1
score, and precision. The BLSTM is trained with a fixed
length (40 time-steps), which is the maximum length of turns
in the DDDM corpus. We use zero-padding to make each
data sample’s time-steps the same if the length is less than 40
turns. In the training stage, the other hyperparameters, i.e.,
batch size and learning rate, is set to be 32 and 5*1e-4, re-
spectively. These parameters are chosen with early stopping
criteria in all conditions to minimize cross entropy on the val-
idation set. The optimizer used in this work is ADAMMAX
[38]. The whole framework is implemented using Pytorch
toolkit [39]. For baseline methods, key hyperparameters, i.e.,
the number of estimators for Random Forest and AdaBoost,
and the cost (C) of SVM, are grid searched within the range
of [2, 4, 8, 16, 32, 64, 128, 256, 512], and [0.5, 0.1, 1 ,10],
respectively.

3.2. Experimental Results and Analyses

Table 1 shows a summary of the complete recognition per-
formances over different baseline methods. The BLSTM-
DNN framework learned from the proposed temporal fea-
ture set with acoustic features obtains the best overall de-
ception detection classification accuracy (74.71% UAR). This
method surpasses methods with acoustic features-only, tem-
poral features-only, and even human ability by 4.4%, 8.69%,
and 19.16% absolute, respectively. The human accuracy is
obtained by computing the concordance rates between inter-
rogator’s labeling of deceiver’s topics versus deceiver’s own
labeling. Our results further demonstrate the importance in
considering dyadic temporal conversational dynamics to im-
prove the deception detection results. The other classifiers
(only with the exception of the Decision Tree classifier) also
reveal a similar finding.

One important observation is that when performing statis-
tical t-tests between truthful and deceptive responses by the
deceiver with respect to the conversational turn-taking fea-
tures (shown in Table 3), conversational dynamic feature set
obtained from the interrogators (i.e., Ask measures) behav-
iors play an important role in indicating whether the deceiver
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Table 2. T-tests between truthful and deceptive responses in acoustic features (if a feature’s p-value is smaller than 0.05 or 0.01,
it is marked by O and *, respectively).

Feature stddev linregerrQ linregerrA range max iqr1-3 min iqr1-2 quartile3quartile1 iqr2-3 skewness amean linregc2 quartile2

∆MFCC8th O* O* O* O O O O O O O O
MFCC8th O* O* O* O O* O O* O O
MFCC6th O* O* O O* O
∆MFCC6th O* O* O* O
Loudness O O O* O* O*
∆MFCC12th O O
MFCC9th O O O O O
∆F0Contour O
∆MFCC7th O O

∆ZCR O
MFCC2th O
∆V oicePro. O
∆Intensity O

Table 3. T-tests between truthful and deceptive responses in
temporal features.

Tem. P-value

Askud 0.037
Asksu 0.037

Askd/Resd 0.041
Askus 0.043
Askst 0.052
Others >0.2

is telling the truth or not. We further listen to the actual
recordings and find that the interrogator would often ask more
detailed questions and spend more time on thinking about
what the next question they wanted to ask for times corre-
sponding to when the deceivers were producing lies. This
particular finding is quite intriguing as we observe that the
“Human” labeled accuracy is relatively low on identifying de-
ceptive events; however, their (interrogators) behaviors (may
be unconsciously) would actually directly indicate whether
he/she was indeed being given a truthful/deceptive answer.

Furthermore, in terms of the acoustic characterization, we
observe a similar trend as previous works that the deceiver’s
acoustic manifestations do reflect whether their answers are
truthful or deceptive (results shown in Table 2). There are 50
dimensions of acoustic parameters where p-values obtained
are smaller than 0.05, and 16 features among them are smaller
than 0.01. Specifically, MFCC8th, MFCC6th, and their
first derivatives are useful for differentiating between truthful
and deceptive responses for the deceivers, which is a similar
result obtained compared with a previous work on an English
dataset [24]. We also conduct a similar analysis on interroga-
tors acoustic features; however, only two features (loudness
and its first derivatives) obtain p-value that are smaller than
0.05.

4. CONCLUSIONS AND FUTURE WORK

The deceivers deception behavior cues exist not only in the
deceiver’s acoustic properties but also alter the interrogators
asking behaviors as the two interlocutors engage in spon-
taneous game-based dialogs. In this work, we propose to
design a set of dyadic conversational dynamics feature set
that can be combined with the conventional acoustic fea-
ture sets to improve deception detection performances using
a BLSTM-DNN with attention network architecture. Our
method achieves a promising accuracy of 74.71% (UAR) on
2-class deception-truth recognition task. To the best of our
knowledge, while there are many works in studying speech
deception detection, this is one of the first works that have ex-
plicitly modeled the conversation dynamics together with the
acoustic characteristics, and it further provides an analysis on
the importance of different feature set in deception detection.
In our immediate future work, we plan to extend our frame-
work to include other behavior attributes, such as the lexical
content to model the exact manner of question-answering
content that may be indicative of a deceptive event. Further-
more, the variability of deception behaviors has been shown
to be related closely to the deceivers personality [28, 7], a
joint modeling of deceivers and interrogators personal at-
tributes within a dynamic conversational setting may lead
to further advancement in robust deception detection frame-
work.

5. REFERENCES

[1] Erik Mac Giolla, Pär Anders Granhag, and Zarah Vern-
ham, “Drawing-based deception detection techniques:
A state-of-the-art review,” Crime Psychology Review,
vol. 3, no. 1, pp. 23–38, 2017.

[2] Timothy J Luke, Maria Hartwig, Emily Joseph, Laure
Brimbal, Ginny Chan, Evan Dawson, Sarah Jordan, Pa-

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1048



tricia Donovan, and Pär Anders Granhag, “Training in
the strategic use of evidence technique: Improving de-
ception detection accuracy of american law enforcement
officers,” Journal of Police and Criminal Psychology,
vol. 31, no. 4, pp. 270–278, 2016.

[3] S Rajkumar, “Assortment of uncertainty and random-
ness with fuzzy logic in deception detection for em-
ployee database management system using hotchpotch
techniques,” World Appl. Sci. J, vol. 21, no. 6, pp. 854–
857, 2013.

[4] Maria Hartwig and Charles F Bond Jr, “Why do lie-
catchers fail? a lens model meta-analysis of human lie
judgments.,” Psychological bulletin, vol. 137, no. 4, pp.
643, 2011.

[5] Leif Strömwall and Pär Anders Granhag, “How to de-
tect deception? arresting the beliefs of police officers,
prosecutors and judges,” Psychology, Crime and Law,
vol. 9, no. 1, pp. 19–36, 2003.

[6] Clea Wright and Jacqueline M Wheatcroft, “Police offi-
cers’ beliefs about, and use of, cues to deception,” Jour-
nal of Investigative Psychology and Offender Profiling,
vol. 14, no. 3, pp. 307–319, 2017.

[7] Samuel D Spencer, “Examining personality factors in
deception detection ability.,” Psi Chi Journal of Psy-
chological Research, vol. 22, no. 2, 2017.

[8] A Mbaziira and J Jones, “A text-based deception de-
tection model for cybercrime,” in Int. Conf. Technol.
Manag, 2016.

[9] Ioannis Pavlidis, Norman L Eberhardt, and James A
Levine, “Human behaviour: Seeing through the face
of deception,” Nature, vol. 415, no. 6867, pp. 35, 2002.

[10] Giorgio Ganis, “Deception detection using neuroimag-
ing,” Detecting deception: Current challenges and cog-
nitive approaches, pp. 105–21, 2015.

[11] Tatia MC Lee, Mei-kei Leung, Tiffany MY Lee, Adrian
Raine, and Chetwyn CH Chan, “I want to lie about not
knowing you, but my precuneus refuses to cooperate,”
Scientific reports, vol. 3, pp. 1636, 2013.

[12] Mingming Zhang, Tao Liu, Matthew Pelowski, and
Dongchuan Yu, “Gender difference in spontaneous de-
ception: A hyperscanning study using functional near-
infrared spectroscopy,” Scientific reports, vol. 7, no. 1,
pp. 7508, 2017.

[13] Jan Ondras and Hatice Gunes, “Detecting deception and
suspicion in dyadic game interactions,” in Proceedings
of the 2018 on International Conference on Multimodal
Interaction. ACM, 2018, pp. 200–209.

[14] Yijun Xiong, junfeng Gao, and Ran Chen, “Connectiv-
ity network analysis of EEG signals for detecting decep-
tion,” Journal of Physics: Conference Series, vol. 1176,
pp. 032051, mar 2019.

[15] Merylin Monaro, Chiara Galante, Riccardo Spolaor,
Qian Qian Li, Luciano Gamberini, Mauro Conti, and
Giuseppe Sartori, “Covert lie detection using keyboard
dynamics,” Scientific reports, vol. 8, no. 1, pp. 1976,
2018.

[16] Aldert Vrij, “Deception and truth detection when an-
alyzing nonverbal and verbal cues,” Applied Cognitive
Psychology, vol. 33, no. 2, pp. 160–167, 2019.

[17] Niall J Conroy, Victoria L Rubin, and Yimin Chen, “Au-
tomatic deception detection: Methods for finding fake
news,” Proceedings of the Association for Information
Science and Technology, vol. 52, no. 1, pp. 1–4, 2015.

[18] Shuo Yang, Kai Shu, Suhang Wang, Renjie Gu, Fan Wu,
and Huan Liu, “Unsupervised fake news detection on
social media: A generative approach,” in Proceedings of
33rd AAAI Conference on Artificial Intelligence, 2019.

[19] K. Veena and P. Visu, “Detection of cyber crime: An ap-
proach using the lie detection technique and methods to
solve it,” in 2016 International Conference on Informa-
tion Communication and Embedded Systems (ICICES),
Feb 2016, pp. 1–6.
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