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Abstract—In recent years, a variety of speech dereverberation
algorithms based on deep neural network (DNN) have been
proposed. These algorithms usually adopt anechoic speech as
their target output. Consequently, speech distortion might occur
which impairs the speech intelligibility. As a matter of fact, early
reflections can increase the strength of the direct-path sound and
therefore have a positive impact on the speech intelligibility. In
traditional speech dereverberation methods, early reflections are
generally remained together with the direct-path sound. Based
on these observations, we propose to adopt both direct-path
sound and early reflections as the target DNN output in this
paper. Moreover, we propose a late reverberation power spectral
density (PSD) aware training strategy to further suppress the
late reverberation. Experimental results demonstrate that the
proposed DNN framework achieves significant improvement in
objective measures even under mismatched conditions.

I. INTRODUCTION

The quality of speech recorded in an enclosed space is

often degraded by the reflections from walls, ceilings and other

objects in the room. The first 40–80 ms of the room impulse

response (RIR) are generally regarded as early reflections, and

reflections that arrive after the early reflections are called late

reflections [1]. The combination of the direct-path sound and

early reflections is referred to as the early sound component.

Early reflections are actually perceived to reinforce the direct-

path sound and are therefore considered useful to the speech

intelligibility [2].
In recent years, many methods for speech dereverberation

have been proposed. The most direct method for speech

dereverberation is supposed to be bind system identification

[3] and inversion. The multiple-input/output inverse theorem

(MINT) [4] was the first such multi-channel inversion method.

However, the MINT approach was shown to be sensitive to

system estimation errors. Spectral subtraction methods [5]

originally proposed for speech enhancement was also adopted

to remove the late reverberation. Microphone array processing
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techniques such as the delay-and-sum beamformer (DSB) and

its variants [6] have shown a satisfying performance for speech

dereverberation especially when used for a joint reverberation

and noise reduction. Recently, the weighted prediction error

(WPE) algorithm [7], [8] has attracted a considerable amount

of research attention. They perform multi-channel linear pre-

diction (MCLP) at each frequency bin in the short-time Fourier

transform (STFT) domain.

Recently, DNNs have become a major research subject due

to their strong regression capabilities [9], [10]. In [11], it

was proposed to address both dereverberation and denoising

using a nonlinear DNN-based regression model. In [12], it

was proposed to adopt a linear activation function at the

output layer and to globally normalize the target features into

zero mean and unit variance. In [13], the effects of time and

frequency sampling on STFT used for speech dereverberation

based on DNNs were investigated. In [14], the effects of frame

shift size and context window size at the DNN input on speech

dereverberation were further investigated. They proposed to

estimate the reverberation time first to better select the frame

shift and context window sizes for the feature extraction.

In the existing speech dereverberation algorithms based on

DNNs, they attempt to adopt anechoic speech as the target out-

put such that the DNN learns to eliminate all the reflections. As

a consequence, speech distortion might occur which impairs

the speech intelligibility. In many traditional dereverberation

algorithms [15], it was proposed to suppress late reflections but

recover the early sound component. Inspired by the traditional

dereverberation algorithms, we propose to adopt both direct-

path sound and early reflections as the target output in this

paper. This means the DNN is trained to only suppress the

late reflections. To enable this late reverberation awareness, the

DNN is fed with the reverberant speech samples augmented

with the late reverberation power spectral density (LRPSD). In

this way, the DNN can use additional on-line late reverberation

feature to better predict the early sound component. Simulation

results demonstrate that the proposed DNN system achieves

significant improvement in objective metrics including unseen

speakers and RIRs over the baseline algorithm.
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Fig. 1. The architecture of the DNN for speech dereverberation.

II. DNN-BASED SPEECH DEREVERBERATION

The architecture of the DNN for speech dereverberation is

presented in Fig. 1. The DNN in this paper includes three hid-

den layers, and each hidden layer includes 2048 hidden units.

We use 512-point FFT and therefore the number of frequency

bins is 257. In the training stage, the DNN is fed with pairs

of reverberant and anechoic speech coefficients represented by

the log PSD which constitute of the input and the output of

the DNN in Fig. 1. The DNN is trained to map the reverberant

speech coefficients to the desired anechoic speech coefficients.

In the dereverberation stage, the well-trained DNN model is

fed with the log PSD features of reverberant speech to generate

the corresponding enhanced log PSD features of the anechoic

speech. Unlike the traditional DNN, the target DNN output

in this paper is the enhanced features of the early sound

component, namely the combination of the direct-path sound

and early reflections.

The enhanced speech signal is re-synthesized using the

enhanced log PSD produced by the DNN and the phase of

the original reverberant speech signal. Because human ears are

shown to be insensitive to small phase distortions. In addition,

it is important to use speech coefficient vectors as the input

of the DNN instead of a single frame. On one hand, this can

help provide more acoustic context. On the other hand, the

current frame is affected by previous frames due to the effect

of reverberation.

III. LRPSD-AWARE TRAINING

In a reverberant environment, the microphone signal x(n)
can be denoted as the convolution of the source signal s(n)
and the RIR h(m),

x(n) =

Lh−1∑

m=0

h(m)s(n−m) (1)

where n denotes the time index, and Lh is the length of the

RIR. The RIR can be divided into the early part hE(m) and

the late part hL(m) as [15]

h(m) =

⎧
⎪⎨

⎪⎩

hE(m), 0 ≤ m < Ne

hL(m), Ne ≤ m < Lh

0, Otherwise

(2)

where Ne = fsTearly is the length of early reflections (fs
being the sampling frequency) and Tearly as the early speech

duration. Substituting (2) into (1), we obtain

x(n) =

Ne−1∑

m=0

hE(m)s(n−m)

︸ ︷︷ ︸
xE(n)

+

Lh−1∑

m=Ne

hL(m)s(n−m)

︸ ︷︷ ︸
xL(n)

(3)

where xE(n) and xL(n) denote the early and late reverberant

components of the speech, respectively. Transforming (3) into

the STFT domain, we get

X(k, l) =

K−1∑

n=0

x(n+ lP )w(n)e−j 2πk
K n = XE(k, l)+XL(k, l)

(4)

where k ∈ {0, 1, . . . ,K − 1} denotes the frequency bin

index, K is the number of total frequency bins, l denotes

the frame index, w(n) is the analysis window, P denotes the

hop size, and XE(k, l) and XL(k, l) denote the early and late

reverberant components in the STFT domain.
To the best of our knowledge, the reverberation feature of

each utterance was not specifically utilized in the existing

speech dereverberation algorithms based on DNNs. To enable

this reverberation awareness, the DNN is fed with the rever-

berant speech coefficients augmented with an estimate of the

LRPSD. As a result, the DNN can use additional on-line late

reverberation spectrum information to better suppress the late

reverberation part. Therefore, the input feature vector of DNN

V(k, l) can be written as

V(k, l) = [σ2
X(k, l − τ), . . . , σ2

X(k, l − 1), σ2
X(k, l),

σ2
X(k, l + 1), . . . , σ2

X(k, l + τ), σ2
XL

(k, l)]
(5)

where σ2
X(k, l) denotes the log PSD of X(k, l), σ2

XL
(k, l)

denotes the log LRPSD of late reverberation. τ denotes the

number of frame expansion, and it was set to 3 in this paper

which means we use 7 frames of input feature expansion

except of the LRPSD frame as depicted in Fig. 1.
In recent years, a variety of LRPSD estimators have been

proposed. In [6], it was shown that the proposed algorithm in

[16] was simple to implementation and resulted in less speech

distortion. Therefore, we choose the estimator proposed in [16]

to obtain the LRPSD. In addition, we assume the reverberation

time T60 to be known to introduce fewer estimation errors. In

[16], they proposed to model the RIR by an exponentially

decaying random process per frequency band. Based on this

model, a recursive scheme for the LRPSD estimator is given

as follows

σ̂2
X(k, l) = [1− β]σ̂2

X(k, l − 1) + β|X(k, l)|2 (6)

σ̂2
XR

(k, l) = [1− κ]e−2αP σ̂2
XR

(k, l − 1)

+ κe−2αP σ̂2
X(k, l − 1)

(7)
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σ̂2
XL

(k, l) = e−2αP (NE−1)σ̂2
XR

(k, l −NE + 1) (8)

where σ̂2
XR

(k, l) denotes the reverberant PSD except the

direct-path term, ·̂ denotes estimated values, α is defined as

3 log 10/(fsT60), NE = Ne/P , β is the smoothing parameter,

and κ is the shape parameter.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In our experiments, the RIRs are constructed with the image

method [17]. The room dimensions are [6, 4, 3] m, and the

source and microphone position are [2, 3, 1.5] m and [4, 1, 2]

m, respectively. Ten RIRs were simulated with RT60 ranging

from 0.1 to 1.0 s (with an increment of 0.1 s) which were

convolved with all 4620 training utterances from the TIMIT

set to build a large training set. Nineteen RIRs were simulated

with RT60 ranging from 0.1 to 1.0 s (with an increment of

0.05 s), and they were convolved with 100 randomly selected

utterances from the TIMIT test set to construct the test set.

We used a sampling frequency of 16 kHz. The frame length

was 32 ms with 50% overlap. The smoothing parameter and

the shape parameter were set to 0.5 and 0.8, respectively.

The desired output for DNN was defined as the clean speech

signals convolved with the first part of the RIRs containing

early reflections until 48 ms after the direct-path sound. The

perceptual evaluation of speech quality (PESQ) and the fre-

quency weighted segmental signal-to-noise ratio (fwSegSNR)

were used to measure the dereverberation performance. It

is worthwhile to note that both of them are obtained by

comparing the enhanced speech with the target speech, namely

the early sound component.

Keras was used to train DNNs. We omit the pre-training

here since large training set is available. The learning rate and

the number of epochs were set to 0.00003 and 30, respectively.

The mini-batch size was set to 128. The baseline algorithm in

our paper is the DNN framework proposed in [12] (without

pre-training), but the difference is that the desired output has

been replaced by the early sound component.

A. Spectrograms

The spectrograms of a test utterance labeled “A” at RT60

= 0.6 s were shown in Fig. 2. The DNN without LRPSD

augmented (the baseline DNN, see Fig. 2(d)) achieved a PESQ

increase of 0.63 compared with the unprocessed reverberant

speech and removed most of the reverberation disturbance.

With the LRPSD augmented (see Fig. 2(e) and Fig. 2(f)), we

obtained much higher PESQ scores than the baseline DNN

system which indicated the improvement of speech quality.

Moreover, we observed that the low frequency contents were

better restored in the spectrograms of the two proposed DNN

systems compared with the baseline system.

B. PESQ and fwSegSNR

In the followings, “Rev” denotes the unprocessed rever-

berant speech, “DNN-baseline” denotes the baseline DNN

system, “DNN-proposed-estimate” denotes the proposed DNN

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Spectrograms of test utterance A, at RT60 = 0.6 s. (a) clean speech,
(b) early speech (PESQ = 4.50), (c) reverberant speech (PESQ = 2.60), (d)
processed by the baseline DNN, (PESQ = 3.23), (e) processed by the proposed
DNN with estimated LRPSD (PESQ = 3.34), (f) processed by the proposed
DNN with oracle LRPSD (PESQ = 3.49).

system with estimated LRPSD augmented, and “DNN-

proposed-oracle” denotes the proposed DNN system with

oracle LRPSD augmented.

The average PESQ and fwSegSNR results of all DNN

outputs on the test set at different RT60s were illustrated in

Fig. 3 and Fig. 4 respectively. The proposed DNN system

with LRPSD augmented (either estimated or oracle LRPSD)

yielded higher objective measure scores than the unprocessed

reverberant speech and the baseline DNN system at most

RT60s, which indicated the advantage of LRPSD augmenta-

tion. Therefore, we can conclude that the augmented LRPSD

can provide more on-line late reverberation spectrum infor-

mation for the DNN system and thus significantly reduce the

reverberation disturbance.

In addition, it was observed that the proposed DNN system

with oracle LRPSD augmented achieved the best performances

compared with all the other DNN systems. Specifically, the

proposed DNN system with oracle LRPSD achieved a PESQ

improvement of 0.77 and 0.25, respectively, compared with the

unprocessed reverberant speech and the baseline DNN results.

As for the fwSegSNR results, the proposed DNN system with

oracle LRPSD augmented boosted the fwSegSNR by 2.1 dB

and 1 dB, respectively, compared with the unprocessed rever-

berant speech and the baseline DNN results. The improve-

ments of objective measure scores indicate the improvement

of speech quality of the enhanced signals. It can be seen that
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Fig. 3. Average PESQ results of the baseline and the proposed DNNs on the
test set at different RT60s.
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Fig. 4. Average fwSegSNR results of the baseline and the proposed DNNs
on the test set at different RT60s.

the accuracy of the LRPSD estimation has a great influence

on the dereverberation performance. This indicates that it is

necessary to utilize more accurate LRPSD estimators in order

to further improve the DNN dereverberation performance.

Simulation results demonstrated that the proposed DNN

systems (“DNN-proposed-estimate” and “DNN-proposed-

oracle”) achieved better performance, in particular, when

the reverberation becomes relatively strong. However, when

compared with the unprocessed reverberant speech at low

RT60s below 0.3 s, the fwSegSNR results of all simulated

DNN systems started to decrease. It would be interesting to

investigate this topic in the future.

V. CONCLUSIONS

We have proposed a new DNN framework for speech

dereverberation in this paper. Inspired by traditional speech

dereverberation algorithms, we propose to adopt both direct-

path sound and early reflections as the target DNN output

to train the model in this paper. To further suppress the late

reverberant speech, the DNN is fed with the reverberant speech

feature vectors augmented with an estimate of the LRPSD.

With a large training set, the proposed DNN system achieved

a significant improvement in terms of PESQ and fwSegSNR

compared with the unprocessed reverberant speech, including

mismatched conditions of RIRs and unseen speakers. The

proposed DNN framework achieved a better performance

especially when the reverberation is quite severe compared

with the baseline DNN results.
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