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Abstract—To model garments into a virtual environment, it is
crucial to predict the physical parameters of the simulated model.
However, it is troublesome for a user or technical director to intu-
itively reflect their aesthetic intention using physical parameters.
In this paper, we propose a framework that predicts various
physical parameters (e.g., stretch resistance, bend resistance,
...) by embedding human perceptual parameters (e.g., wrinkly,
stretchy, ...) in multi-task learning (MTL) perspective. By predict-
ing both physical and perceptual parameters, we can effectively
solve this problem, and can give an important cue to model
a 3D garment maximizing users visual presence. Furthermore,
by taking a class activation mapping method, our model seeks
the intermediate visual understanding of physical and perceptual
parameters. Through the rigorous experiments, we demonstrate
that the predicted physical and perceptual parameters agree with
subjective values.

I. INTRODUCTION

In recent years, due to the development of head-mounted
display and rendering methods, the demand for VR/AR content
is increasing, resulting in rapid growth of 3D application
markets. As a result, the understanding of 3D models became
a critical factor to design vivid 3D scenes. Among various
3D modeling methods, a parametric simulation method that
reflects physical effects into garments plays an important role
in improving the realism of 3D garment model.

Generally, 3D garment models are simulated by graphics
tools such as Maya, 3ds Max, and Cinema4D by tuning
physical parameters of the material. In the case of Maya’s
nCloth, which is one of the well-utilized garment simulators,
there are various physical parameters (e.g., stretch resistance,
bend resistance, ...).

Technical directors manipulate these physical parameters
into the garment model to mimic the desired texture of the
target material. In this manner, there are several studies which
estimate physical parameters over garment videos [1], [2], [3].
However, since the physical parameters are determined by
mathematics-based physics formula, there is a limitation of
intuitive understanding between target garment and 3D model
[4], [5]. For this reason, the technical director needs to acquire
physical prior-knowledge to implement various garment in
3D scenes. Therefore, it is remains a tough problem to the
technical directors to simulate realistic and vivid garment.

To address this problem, Sigal et al. [6] proposed a percep-
tual control space. In [6], they defined the term perceptual
parameters, which are understandable at a glance such as
wrinkly, stretchy, and so on. Although they conduct various

Fig. 1. Garment patterns. From left to right, it represents solid color, light
pattern, simple pattern, complex pattern, and circular pattern.

simulations using the perceptual parameters using the method
of subjective assessment, there is a lack of objective prediction
of the physical parameters. Therefore, objective analysis of a
new garment sample is still difficult, and it is hard to be applied
in practical 3D modeling fields.

Therefore, we propose a novel multi-stage framework,
which is termed multi-task learning-based Garment Percep-
tual Physical Parameter Assessor (G3PA), fully utilizes the
advantages of the human perceptual opinion and physical
mechanism of the garment model. By using G3PA, it is appli-
cable for the user to model 3D garment easily in the graphics
applications, and can help intuitive understanding of garment
materials. Furthermore, to visualize how the human visually
perceives garment movements, we employ class activation map
(CAM) algorithm [7]. In addition, to verify the performance
of G3PA, we build the 3D garment video database.

The contributions of G3PA are 1) constructing a 3D garment
video database which considers various garment patterns and
physical parameters, 2) predicting both physical and perceptual
parameters effectively by embedding perceptual parameters in
a multi-task learning, 3) visualizing the activation map as an
intermediate step to analyze the perceptual motion of the 3D
garment.

II. 3D GARMENT VIDEO DATABASE

There were few studies analyzing the physical parameters
by using the database introduced in [8]. This database is
composed of real-world garments, therefore, it is hard to
apply in graphics application directly. To tackle this problem,
we construct a 3D garment database modeled by various
physical types and 2D pattern types. Each garment video has
1024×1024 spatial resolution of 192 frames. 3D model based
video sequences include various external physical motions
generated by wind effect (wind gives textural motion to 3D
garments as shown in Fig. 1), and they are simulated by nCloth
in Maya.
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TABLE I
DATA DETAILS.

Physical
parameter Value Physical meaning

Stretch
resistance

60, 300, 540,
780, 1020

Specifies the amount the current object
resists stretching when under tension.

Bend
resistance

0.2, 1, 1.8,
2.6, 3.4

Specifies the amount the object resists
bending across edges when under strain.

Deform
resistance

0.1, 0.5, 0.9,
1.3, 1.7

Specifies how much the current object
wants to maintain its current shape.

Lift 0.1, 0.5, 0.9,
1.3, 1.7

The component of aerodynamic force
perpendicular to the relative wind.

Drag 0.1, 0.5, 0.9,
1.3, 1.7

The component of aerodynamic force
parallel to the relative wind.

In general, professional simulation artists have utilized 11
physical parameters to construct a general 3D model [6].
However, these parameters are correlated to each other, these
can be combined to create similar garment movements. There-
fore, it makes difficult to train the model stably. To address
this, we choose 5 physical parameters (stretch/bend/deform
resistance, lift and drag) out of 11 physical parameters that
play an important role in the 3D garment model. The details
of physical parameters are depicted in Table I.

The value of each physical parameter shown in Table I was
chosen so that the users could recognize the physical changes.
Then, each video in our database is made up of a combination
of five physical parameters sampled randomly among the
values of the selected physical parameters. Note that, due to
the diversity of the database, we use 5 garment pattern types
(solid, light, simple, complex and circular), which are depicted
in Fig. 1. Therefore the size of our database is 5×25=125
videos, where 5 garment patterns and 25 physical parameter
combinations.

In accordance with ITU-R BT.500-13 [9], we conducted
a subjective experiment by using constructed garment videos.
Firstly, we selected eleven candidates of perceptual parameters
which have been analyzed by previous work [6]. Among
them, we carefully chose four perceptual parameters (wrinkly,
stretchy, heavy and smooth) to exclude the duplicate physical
tendency on the 3D garment model. Each of 22 non-experts
from the age group of 20-30 years participated in the experi-
ment. All subjects were screened for normal visual acuity on
the Landolt chart. Each subject watched garment videos and
scored each perceptual parameter scale from 1 to 5 (Likert-
like scale: 1 is not <perceptual parameter>, 5 equal to very
< perceptual parameter >). The mean opinion score (MOS)
of each individually evaluated parameter were used as ground-
truth of the perceptual parameter.

III. FRAMEWORK OF G3PA

A. Overview of the proposed G3PA

Fig. 2 shows the overall framework of the G3PA. G3PA
is composed of two stages. The first stage is pre-processing
which considers motion characteristics as inputs, and it is

described in Section III-B. The second stage is the multi-
task learning, making the G3PA to predict the physical and
perceptual parameters simultaneously. In Section III-C, we
describe the details of the training strategies of the second
stage.

B. Stage1: Motion Factor Extraction

Bouman et al. [1] experimentally showed that the motion
is crucial when human perceives the physical properties of a
garment. In particular, they also showed that the second order
spatio-temporal derivatives (i.e., a change in frame difference)
are the most important motion factors for perceiving garment
properties [1], [10].

The most intuitive way of motion estimation is to compute
the frame difference. However, there is a problem in conduct-
ing the frame difference to predict the garment parameters.
When a user perceives a texture of garment material, the local
region having low-spatial frequency is more sensitive than
those in the high-spatial-frequency. For instance, in Fig. 1,
when the human seeks to perceive the texture of the garment,
they tend to look the blown region by the wind than each
patterns of the garment. Therefore, a simple Gaussian low-
pass filter is applied to avoid input maps being focused in
the unnecessary pattern area while meeting human visual
characteristics. The frame difference map Dt,a is computed
as

Dt,a =
∣∣GLP (It+a)−GLP (It)

∣∣ , (1)

where It is t-th frame of a video resized to 256 × 256
resolution, and GLP (·) is Gaussian low-pass filter, and a is
sampling range to consider various temporal variances from
the reference frame (we use 2, 4, 8 and 16 in this paper).
Here, we used the Gaussian low-pass filter of 3×3 kernel size
and variation 1. After computing the frame difference map, we
concatenate the frame difference maps in the reference frame
It as channels. Therefore, the t-th sample set is defined as
follows

It =
{
It;Dt,2;Dt,4;Dt,8;Dt,16 | t ∈ [1, T − 16]

}
, (2)

where T is the number of frames in one video sample. Since
G3PA has It as and input, which has motion factor for the
reference frame, we assume that entire frames in one video
of our database has the same MOS and computes loss for the
perceptual parameters.

C. Stage 2: Multi-task learning

Multi-task learning is a way to solve multiple tasks while
training a generalized feature representation along the tasks
[11]. To employ multi-task learning, there must be strong
correlation across tasks [12], [13]. In other words, each task in
multi-task learning should be related in terms of their purpose.
In our approach, we believe the perceptual parameters and
physical parameters have a strong relationship since Sigal et
al. [6] has experimentally proved their relational importance.
Therefore, we employ multi-task learning in physical param-
eter prediction by embedding perceptual parameter.
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(a) Stage 1: motion factor extraction.

(b) Stage 2: multi-task learning of physical parameters and
perceptual parameters.

Fig. 2. The proposed G3PA framework. For each reference frame, we
design the input It that reflects the motion factor by concatenating the frame
difference map. The multi-task learning model takes It as an input and
predicts the physical parameters and perceptual parameters.

1) Multi-task loss: The proposed G3PA takes It as an input
and it is fed to the first CNN consists of six convolution
layers (3 × 3 kernel, 1 stride and 1 padding) with four max
pooling layers. The feature map, which is the output of the first
CNN, has learned the common traits of the garment movement
caused by physical and perceptual parameters. Then, it is
divided into two CNN branches to infer each task individually.
The each second CNN has one convolution layer (3×3 kernel,
1 stride and 1 padding) without down-sampling. The output of
the second CNN is 16×16×512 size feature map. The feature
map of the physical parameters and the perceptual parameters
are termed f tphy , f tper at frame t, respectively. Then, each
feature map f tphy and f tper are regressed onto each ground-
truth parameters after global average pooling (GAP) layer and
fully connected (FC) layer. To optimize the proposed model,
we construct a multi-task learning loss with several constraint
terms. Basically, the mean squared error is applied to minimize
each error between each tasks’ parameters and ground-truth
parameters. Each tasks’ loss lp defined as

lp =
N∑
i=1

∥∥st,ip −GT i
p

∥∥2 (p ∈ {phy, per}), (3)

where N is total number of physical or perceptual parameters,
st,ip is i-th predicted parameter, and GT i

p is i-th ground-truth
parameters (p ∈ {phy, per}). However, st,iphy and st,iper are
predicted for 16 frame lengths of the reference frame It.
Therefore, the physical and perceptual parameters for one
video are computed as the temporal average pooling of st,iphy

and st,iper. Consequently, the predicted i-th physical parameter
Si
phy and the i-th perceptual parameter Si

per for a video are
defined as

Si
p =

1

T − 16

T−16∑
t=1

st,ip (p ∈ {phy, per}). (4)

2) Total variation loss: If the model is optimized to mini-
mize the MSE without any constraints, then the feature repre-
sentation is affected by undesirable noise [14]. Therefore, we
apply a smoothing restriction that penalizes high frequencies
in the feature map using the total variation (TV) L2 standard
[15], [16], [17].

TV (f tp) =
1

H ·W
∑
x,y

(shorz,p(x, y)2 + svert,p(x, y)2), (5)

where H, W indicate the height and width of s, and sthorz,p,
stvert,p are Sobel-filtered feature maps in the horizontal and
vertical directions, respectively (p ∈ {phy, per}), and (x,y)
means spatial location. Total variation loss is defined as lTV =∑

k TV (f tp,k), where k indicate the channel of the feature map
(k=1, 2, ..., 512). Final loss function of G3PA, lG3PA is

lG3PA = lphy + α · lper + β · lTV + γ · l2, (6)

where l2 is L2 regularization term and α, β, γ are hyper
parameters that determine the learning ratio between each loss.
These hyper parameters are tuned by validation set (α = 0.8,
β = 10−7 and γ = 10−5).

D. Visualize Motion Factor

In order to visualize the perceptual motion factor, we
compute class activation map from the extracted feature. Class
activation map algorithm highlights the attention region that is
relevant to the predicted values [7], [18]. As a result, the class
activation maps M i

phy , M i
per for the i-th physical parameter

and the i-th perceptual parameter is

M t,i
p (x, y) =

∑
k

wi
p,kf

t
p,k(x, y) (p ∈ {phy, per}), (7)

where wi
p,k is the k-th weight of the fully connected layer

regress into i-th physical or perceptual parameter st,ip (k =
1, 2, ..., 512).

IV. EXPERIMENTS

During the experiment, we randomly divided our database
into three subset, 80% for training, 10% for validation and
10% for testing, and all parameters are normalized between 0
to 1, divided by the maximum value (e.g., all stretch resistance
is divide by 1020).

In order to validate performance of G3PA, an ablation test
and visual analysis of the intermediate results are performed.
To compare the performance of G3PA, the well-known corre-
lation measurements were used: Pearson’s linear correlation
coefficient (PLCC) and Spearman’s rank-order correlation
coefficient (SROCC). Table II shows the ablation test results
of three cases of the G3PA and subscripts means used loss.
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TABLE II
ABLATION TEST RESULTS OF G3PA.

Stretch
resistance

Bend
resistance

Deform
resistance Lift Drag Wrinkly Stretchy Heavy Smooth

G3PAphy
PLCC 0.741 0.700 0.861 0.837 0.554 - - - -

SROCC 0.776 0.715 0.883 0.806 0.545 - - - -

G3PAphy,per
PLCC 0.745 0.733 0.912 0.874 0.610 0.861 0.613 0.893 0.821

SROCC 0.784 0.731 0.917 0.856 0.590 0.846 0.675 0.889 0.797

G3PAphy,per,TV
PLCC 0.776 0.747 0.913 0.888 0.639 0.879 0.629 0.895 0.846

SROCC 0.804 0.767 0.919 0.864 0.616 0.859 0.619 0.898 0.820

(a) Stretch resistance (b) Deform resistance (c) Lift (d) Drag (e) Wrinkly (f) Heavy

Fig. 3. CAM visualization. Results of class activation map visualization for each parameter.

The main point of the ablation test is that multi-task
learning was applied to G3PAphy,per and G3PAphy,per,TV .
By comparing G3PAphy and G3PAphy,per, we could see that
the use of perceptual parameters improves physical parameter
prediction performance. G3PAphy,per,TV shows the result of
adding total variation loss term, along with physical and
perceptual parameters. As a result, we show that multi-task
learning about physical and perceptual parameters has notice-
able performance improvements compared to the model that
has only learned about physical parameters. Note that total
variation loss reduces undesirable noise, resulting performance
in superior performance. Therefore proposed G3PA is reason-
able for understanding the 3D garment models.

Fig. 3 shows the class activation map M t,i
phy , M t,i

per of G3PA.
It shows that each parameter has a different activation region.
Stretch resistance determines the degree of stretching on 3D
garment. Therefore, edge and wrinkled regions are activated.
In addition, when the garment was entirely stretched, we can
see most of the area was activated except for the fixed upper
part. Deform resistance decide how much the garment is trying
to maintain its current shape. Since the amount of wrinkle
intensity can be interpreted as the degree of keeping the current
shape, deform resistance mainly activates on the wrinkled
region. Lift is the perpendicular component of acting force,
and conversely drag is the parallel component. According to
this, activation map of lift and drag is highlighted on wrinkled
and flat region, respectively. Consequently, we can see that

activated regions of lift and drag are in an inverted relationship,
and it is consistent to the physical meaning of parameters.
In the case of perceptual parameters, since human perceives
garment properties by motion factor, class activation map of
every perceptual parameter is activated in the wrinkled region,
but its details are different. We could see that Wrinkly activates
the entire wrinkled region but Heavy largely activates in the
deep wrinkled region.

V. CONCLUSION

In this paper, we proposed a novel garment parameters
prediction framework named G3PA. The G3PA is a multi-
stage framework, and we employ multi-task learning to predict
both physical and perceptual parameter simultaneously. To
verify the performance of G3PA, we construct a 3D garment
database and show that G3PA has a remarkable performance.
Furthermore, we visualize the intermediate results of G3PA
and analyze them. Based on this, we believe that the G3PA
provides an important motion factor that reflects the human
visual characteristics, and it will help technical directors to
design vivid 3D scenes.
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Neverova, Alain Trémeau, and Christian Wolf, “Multi-task, multi-
domain learning: application to semantic segmentation and pose regres-
sion,” Neurocomputing, vol. 251, pp. 68–80, 2017.

[13] Rajeev Ranjan, Vishal M Patel, and Rama Chellappa, “Hyperface: A
deep multi-task learning framework for face detection, landmark local-
ization, pose estimation, and gender recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 41, no. 1, pp. 121–135,
2019.

[14] Leonid I Rudin, Stanley Osher, and Emad Fatemi, “Nonlinear total
variation based noise removal algorithms,” Physica D: nonlinear
phenomena, vol. 60, no. 1-4, pp. 259–268, 1992.

[15] Jongyoo Kim, Anh-Duc Nguyen, and Sanghoon Lee, “Deep cnn-based
blind image quality predictor,” IEEE transactions on neural networks
and learning systems, , no. 99, pp. 1–14, 2018.

[16] Woojae Kim, Jongyoo Kim, Sewoong Ahn, Jinwoo Kim, and Sanghoon
Lee, “Deep video quality assessor: From spatio-temporal visual sensitiv-
ity to a convolutional neural aggregation network,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 219–234.

[17] Jongyoo Kim and Sanghoon Lee, “Deep learning of human visual
sensitivity in image quality assessment framework,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2017, pp. 1969–1977.

[18] Min Lin, Qiang Chen, and Shuicheng Yan, “Network in network,” arXiv
preprint arXiv:1312.4400, 2013.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1949




