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Abstract—Supervised learning methods have shown promis-
ing results for the handwritten text segmentation in scribbled
documents. However, many previous methods have handled
the problem as a connected component analysis due to the
extreme difficulty of pixel-level annotations. Although there is an
approach to solve this problem by using synthetically generated
data, the resultant model does not generalize well to real scribbled
documents due to the domain gap between the real and synthetic
dataset. To alleviate the problems, we propose an unsupervised
domain adaptation strategy for the pixel-level handwritten text
segmentation. This is accomplished by employing an adversarial
discriminative model to align the source and target distribution
in the feature space, incorporating entropy minimization loss to
make the model discriminative even for the unlabeled target data.
Experimental results show that the proposed method outperforms
the baseline network both quantitatively and qualitatively. Specif-
ically, the proposed adaptation strategy mitigates the domain
shift problem very well, showing the improvement of baseline
performance (IoU) from 64.617% to 85.642%.

Index Terms—handwritten text segmentation, synthetic
dataset, unsupervised domain adaptation, domain shift, entropy
minimization

I. INTRODUCTION

Convolutional Neural Networks (CNNs) have drastically
innovated the field of computer vision, achieving the best per-
formance in a multitude of tasks such as image classification
[1], semantic segmentation [2], object detection [3], etc. The
prerequisite of these successful results is the availability of
abundant labeled training data for supervision. However, such
abundances are a privilege only for certain well-known areas
[1]–[3], and there are barren areas still under construction of
dataset for the introduction of CNN. Additionally, obtaining
annotated data remains a cumbersome and expensive process
in the majority of applications. Semantic segmentation is
one such task that requires great human effort as it involves
annotating dense pixel-level labels [4]–[6]. Even with a lot of
effort to complete the annotation, each individual’s subjective
annotation in the ambiguous boundaries or distorted regions
may cause the network to converge to a sub-optimal solution.
One promising approach that addresses the above issues is
the utility of synthetically generated data for training without
human’s subjective decision [7]–[10].

There was an effort to introduce CNNs to handwritten
text segmentation in scribbled documents [30]. In order to
construct the dataset for training the segmentation network
for supervision, they presented an algorithm for the syn-
thesis of scribbled documents that can easily obtain pixel-

level annotations of handwritten text. They used separately
existing datasets: IAM dataset [11] as handwritten text and
PRImA dataset [12] as scanned documents. To make realistic
scribbled documents, they paid attention to the preservation
of textures of handwritten text and consistent scan noise of
documents, removing undesirable block artifacts from IAM
dataset. Since pixel-level annotations of handwritten text were
easily obtained through Otsu binarization [13], large amounts
of training data were successfully established without human
intervention. However, the network performs well for synthetic
data that is participated in the training, but does not work well
for real scribbled documents, showing lack of generalization
ability as shown in Fig. 1.

Like the above-mentioned example, training a CNN based
on such visually appealing synthetic data, and then applying
it to real-world images will give inferior performance due
to the large differences in image characteristics which give
rise to the domain shift problem [14]. From a probabilistic
point of view, considering the network that is trained only by
samples derived from a source distribution (synthetic data), the
network will work well only if the test data is also sampled
from the same distribution. In this respect, we can infer that
the overfitted performance is derived from the discrepancies
between synthetic and real images distribution.

A convincing solution to diminish the domain shift prob-
lem is the Domain Adaptation (DA) [15]–[28]. In principle,
DA is achieved by minimizing some measure of distance
between the source and the target distributions [15]. The
general approaches of domain adaptation either attempt to
learn an additional mapping layer to reduce gap in domain
representation [18] or learn domain invariant representations
in the same feature space [25].

Inspired by the latter approach, we propose a domain
adaptation strategy for handwritten text segmentation. Specif-
ically, adopting Jo et al.’s network [30] as a baseline of
segmentation network, we apply DA process that is to transfer
learned representations from a synthetic to a real dataset by
fine-tuning the model on unlabeled target data to address
the aforementioned domain shift problem. We focus on the
practical case of the problem where no labels from the real
domain are available, which is commonly referred to as Unsu-
pervised Domain Adaptation (UDA). Also, while aligning the
distribution of target data to source ones in feature space, we
further incorporate the entropy minimization loss [28] to make
the proposed network discriminative for unlabeled target data.
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(a) synthetic image (b) (c) real image (d)

Fig. 1: Overfitted performances of Jo et al.’s network [30] that is trained only by synthetic training data: (a), (c) input images
(synthetic and real), (b), (d) segmentation results (blue: correctly segmented pixels, red: missing or incorrect ones).

To the best of our knowledge, this is the first work to explore
UDA for handwritten text segmentation. From our extensive
experiments, it achieves plausible results in terms of objective
measures.

The rest of this paper is organized as follows. We start by
introducing related works in Section II. In Section III and
IV, we present details of our proposed network architecture
and experiments, respectively. Section V handles results with
analysis. Finally, Section VI draws concluding remarks.

II. RELATED WORK

A. Handwritten text segmentation

Document digitization has been an important topic for the
decades, and a huge number of methods have been proposed
to address many kinds of sub-tasks such as optical character
recognition, layout analysis, and so on [31]–[33]. However,
the performance of the methods can be severely degraded
when there are scribbles on the document. Hence, many
researchers addressed separating handwritten texts from the
printed document by segmenting them as a unit of connected
component (CC) [34]–[40]. In [38], they extracted CCs and
assigned feature vectors to them by exploiting hand-crafted
features between components. Finally, they classified each
component by applying a k-nearest neighbor classifier. Simi-
larly, Kandan et al. [36] classified each component by using
support vector machines, improving descriptors to be robust
to deformations. Li et al. [34] use CNNs to classify CCs,
incorporating conditional random fields into their framework
to consider relations with neighboring CCs. However, since
these methods employ binarization and CC extraction as
essential preprocessing steps, they have drawbacks that the
final performance heavily depends on the performance of each
module and lack of generalization ability. To alleviate these
problems, Jo et al. [30] proposed a pixel-level handwritten
text segmentation method based on an end-to-end CNN which

does not need any preprocessing steps. They assigned ‘+1’
for pixels of handwritten text and ‘-1’ for others (background,
machine-printed text, table boundaries, and so on). Also, to
construct a dataset for training the network with supervision,
they presented a promising synthesis algorithm that can gen-
erate realistic scribbled documents along with the pixel-level
annotated labels. However, their network that is trained with
synthetic data shows overfitted performances to synthetic data.
To address this problem, we adopt Jo et al.’s network [30] as
the baseline network for handwritten text segmentation and
modify it to fit our framework.

B. Domain Adaptation

Domain Adaptation (DA) is a kind of transfer learning that
leverages labeled data in one or more related source domains,
to perform well for unlabeled data in a target domain [15].
This is generally achieved by minimizing some measure of
domain variance, such as the Maximum Mean Discrepancy
(MMD) [20], or by matching moments of the two distributions
[21]. Recently, adversarial training approaches have shown
convincing results, where adversarial generative models [22]–
[24] aim to generate source-like data with target data, while
adversarial discriminative models [25]–[27] focus on aligning
distribution of representations of target domain to source do-
main in embedding spaces. These impressive strategies of DA
have worked as a breakthrough of efficient learning methods
using synthetic dataset, such as GTA5 [8], SYNTHIA [9], and
so on [7], [10]. Inspired by these approaches [16]–[19], we
apply adversarial discriminative models to alleviate the domain
shift problem in handwritten text segmentation task.

III. METHODOLOGY

In this section, we provide details of the DA model for
handwritten text segmentation. Let synthetic images xs ∈
Xs ⊂ RH×W and the corresponding one-hot encoded binary
segmentation map ys ∈ Ys ⊂ RH×W×2 as samples from
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Fig. 2: Overall architectures of proposed network. The networks drawn by the dotted line represent the parts that are updated
by participating in the adversarial adaptation process.

a source distribution, S(x, y). In the case of real images,
xt ∈ Xt ⊂ RH×W are drawn from a target distribution,
T (x, y). In consideration of the practical issues, labels yt ∈
Yt ⊂ RH×W×2 cannot be accessed. The baseline network,
Jo et al.’s [30], can be divided into two components: Feature
extractor F (·) that embeds an input image to latent representa-
tion spaces, and Generator G(·) that yields the corresponding
segmentation map from the latent representations. We aim that
learned informative representations from synthetic are well
applied to the real data by fine-tuning the model on unlabeled
target data through adversarial training in the manner of
UDA. Overall architecture of proposed network is illustrated
in Fig. 2.

A. Proposed Approach

We initially train the baseline {Fs(·), Gs(·)} on only syn-
thetic data with full supervision. As a result, the segmentation
performance of the network is prone to overfit to source data
expressed as

error(P) = E(x,y)∼P [||Gs(Fs(x))− y||1], (1)

error(S)� error(T ), (2)

suggesting biased training derived from the differences in
image characteristics between source and target. If we utilize
the same generator, Gs(·) = Gt(·) = G(·), that learns
the posteriors, P(Y |Z), i.e., the prediction of the pixel-level
category of the object (Y ), given latent representations (Z),
we can infer that the domain shift problem is caused by the
difference on the marginal distribution P(Z). In other words,
to address the problem, we should enforce the distributions
of representation from two domains to be indistinguishable

in the feature space, i.e., P(Fs(Xs)) = P(Ft(Xt)), for the
subsequent prediction. For setting the range of adaptation
in Ft(·), we refer to [29] regarding the transferability of
learned features in hierarchical deep networks. They informed
that as we move from lower to higher layers, there are
increases in domain discrimination capability. In other words,
discrepancies between feature distributions are derived from
some of higher layers in Ft(·), and then, we empirically apply
adaptation process to only higher 4 convolutional layers of
Ft(·), named as Fpb(·), and fixed shared parameters of other
layers.

We start the adaptation process by initializing Ft(·) with
the supervisely trained weights of Fs(·). To measure the dis-
crepancies of latent distributions between source and target, we
employ domain discriminator D(·) that discriminates origin of
latent representations between the source and target in feature
spaces. With each iteration, D(·) and Fpb(·) are adversarially
trained. Fpb(·) is updated to learn which embeddings are more
likely to fool D(·), i.e., to embed indistinguishably in feature
spaces between source and target. As training progresses, the
features become more domain invariant, therefore, the predic-
tion performance gradually improves. We further incorporate
the entropy minimization loss [28] to make proposed network
discriminative for unlabeled target data during aligning feature
distribution of target to source,.

In rest of this section, we explain the objective functions for
adversarial adaptation. Details on adversarial adaptation train-
ing process is summarized as a pseudocode in Algorithm 1.
The optimization steps are implemented using stochastic gra-
dient updates of each minibatch.
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B. Objective Functions

1) Segmentation loss: Cross entropy loss is widely used
in segmentation task [2], [41]. However, as [30] stated, there
are class imbalance problems that the number of background
pixels is approximately 20 times larger than that of text pixels
which make network converge to sub-optimal solution. To
alleviate the problems, they proposed dynamically balanced
cross entropy loss LDBCE incorporating with focal loss. In our
case, to deviate the instability of LDBCE for adversarial training,
we only adopt focal loss [42] given as,

Lseg(F (·),S) = E(xs,ys)∼S [FC(G(F (xs)), ys)], (3)

where

FC(p, q) = || − q � (1− p)γ � log(p)||1, (4)

where p, q ∈ RH×W×2 denote prediction probability map
through proposed network and one-hot encoded label map,
respectively. γ is the hyperparameter that determines the boost
degree of the penalty. The scaling factor (1−p)γ automatically
lessens the contribution of easy examples and makes the model
focus on hard examples, balancing the training.

2) Adversarial loss: To enforce the distributions of rep-
resentation from two domains to be closer in feature space,
discrepancies between them are measured by D(·) that trained
to maximize the probability of assigning the correct label
to both source examples and target examples as 1 and 0,
respectively. For D(·) and Fpb(·), the adversarial loss is
described as

Lad:D(S, T ) = Exs∼S [(D(Fs(xs))− 1)2]

+ Ext∼T [(D(Ft(xt)))
2], (5)

Lad:F (T ) = Ext∼T [(D(Ft(xt))− 1)2]. (6)

We employed a least-squares GAN loss [47] to stabilize the
training of D(·).

3) Entropy minimization loss: To obtain discriminative
features on unlabeled target examples, we need to cluster
target features far from the decision boundary of G(·) without
supervision due to absences of labels. We adopt the entropy
minimization loss Lentropy on target data given as

Lentropy(T ) = Ext∼T [H(G(Ft(xt)))], (7)

where

H(p) = || − p� log(p)||1, (8)

where p ∈ RH×W×2 denote prediction probability map
through proposed network. Derived gradient by this term
only flows to Fpb, enforcing feature embedding of target data
far from the decision boundary of G(·), which is the way
that reducing the self-entropy, i.e., decreasing the uncertainty
of class probability, resulting in the desired discriminative
features.

Algorithm 1 Training Procedure for Adaptation

STEP 1: Training of baseline network
for N steps do

Sample k patches from S : XS := {xis, yis}ki=1

θ∗Fs
, θ∗G ← arg min

θFs ,θG
Lseg(Fs(·),XS)

end for

STEP 2: Initialize for adaptation

θ∗Ft
← θ∗Fs

while Lad:D > ε do
Sample k patches from S : XS := {xis, yis}ki=1

Sample k patches from T : XT := {xit}ki=1

θ∗D ← argmin
θD
Lad:D(XS ,XT )

end while

STEP 3: Adversarial training between D(·) and Fpb(·)
while do

Sample k patches from S : XS := {xis, yis}ki=1

Sample k patches from T : XT := {xit}ki=1

θ∗D ← argmin
θD
Lad:D(XS ,XT )

θ∗Fpb
← argmin

θFpb

{λ1Lseg(Ft(·),XT ) + Lad:F (XT )
+ λ2Lentropy(XT )}

end while

IV. EXPERIMENTS

A. Dataset

As source dataset, we used synthetically generated scribbled
documents that Jo et al. [30] released. This dataset is com-
posed of 146, 391 patches (128 × 128) of synthetic scribbled
documents with perfectly annotated pixel-level labels. In the
case of target dataset, we manually assembled a wide range of
the scribbled documents without any annotations. For utilizing
in adaptation training procedure, we cropped and augmented,
and then finally, made 23, 596 patches with the same size
of source ones. So, unlabeled training patches are used in
unsupervised manners, due to absence of annotations. Owing
to absence of annotations, real images are participated in
training only with unsupervised manner.

B. Specification of training

We have trained the network using RMSProp [48] optimizer
with a mini-batch size of 32. To stabilize the adversarial
training, we set the initial learning rate as a small value
(0.00005) with 0.96 decay rate in every 30 epochs. In case of
others hyper-parameters, we empirically set γ = 1, λ1 = 0.01,
and λ2 = 0.1, respectively.

C. Convergence issues

There are two critical convergence issues in the early
stages of adversarial training. First, when setting the time

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

787



(a) original image (b) Jo et al. [30] (c) Baseline (d) ours

Fig. 3: Segmentation results on a real scribbled document through each captioned model.

of intervention for adaptation training, there are some trade-
offs: The faster the intervention time, the less time was spent
learning the informative representations solely on the source
data, and then performance was poor. Conversely, the slower
the intervention time, the more severe the discrepancies and
the alignment becomes impossible. Considering these facts,
we empirically intervene after 20, 000 iteration of training for
baseline.

The second problem occurs in the early stages of adversarial
learning when D(·) does not work well, i.e., provide bad
information as the value of the gradient used to train Fpb(·).
As a result, we could see that weights that trained with the
synthetic dataset were meaningless. To prevent the signif-
icantly lower performance of D(·) from contaminating the
informative representations from Fs(·), We started adversairal
training process after learning D(·) to give some performance.

V. RESULTS

In this section, we present a thorough ablation study to
see whether the objective functions contribute to the overall
performance. We did not perform the comparisons with other
existing works [34]–[40] except Jo et al. [30]. Since there is
none that publicly provides the code and data to compare the
performances. Also critically, they dealt with CCs or region-
level results that can not be directly compared to ours, i.e.,
pixel-level results.

For the quantitative comparisons, mean of pixel-level
intersection-over-union (mIoU) among the classes has been

TABLE I: IoU results on real scribbled documents. The best
results are highlighted in bold face and the second best results
are underlined. H: handwritten text

Method non-H (%) H (%)
Jo et al. [30] 98.818 64.617

baseline 98.698 58.933
Lseg Lad Lentropy

X 99.394 81.279
X X 99.470 83.660
X X X 99.533 85.642

widely evaluated in semantic segmentation task. In our case,
due to severe imbalance between non-handwritten text pixels
and handwritten text ones, mean value of IoU has numerically
meaningless, instead, evaluate IoU of each class.

A. Ablation Study

TABLE I demonstrates the effect of each individual ob-
jective function for the overall performance. Alone with the
adversarial loss Lad for adaptation process, overfitted perfor-
mance to synthetic data is quite mitigated, showing significant
gain from 58.932% to 81.279%. In this respect, we can
conclude that applying adaptation technique to baseline is
meaningfully functioning to address the domain shift problem.
G(·) was trained to predict segmentation map exactly fitted

to the features of synthetic data. In this respect, if Ft(·) has
no constraints to maintain informative representations about
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source, G(·) could not work its role for performance. By
imposing the constraints about maintenance of information
through Lseg , we achieve the advantages of 2.381%p as shown
in TABLE I.

While we observe that using only the adversarial loss and
baseline loss terms does improve performance, the entropy
minimization loss is needed to get the full performance benefit.
As shown in TABLE I, we can conclude that usage of entropy
minimization objective on unlabeled data makes the network
discriminative for unlabeled data.

B. Comparisons with other approach

Fig. 3 demonstrates the comparisons of segmentation per-
formance on each methods, where the first column shows the
input and the label of segmentation results on green and red-
box region. We compare our method to Jo et al.’s network
[30] that we used it as our baseline in modified form. They
tried efforts to diminish the overfitting problems, such as
applying l2-weight decay as regularization and removal of
undesirable block artifacts in synthetic data for realistic. As
stated in Section III-B1, we could not use LDBCE to address task-
specific imbalance problems due to the convergence issues of
adversarial training. Although our baseline network perfor-
mance is degraded from 64.617% to 58.933% against Jo et
al.’s network [30], applying DA technique, proposed network
outperforms with the significant margin as shown in TABLE I.
Additionally, as shown in Fig. 3, proposed networks have a
great enhancement of segmentation performance, addressing
the domain shift problem.

VI. CONCLUSION

In this paper, we have addressed overfitted performance of
previous handwritten segmentation network to synthetic train-
ing dataset, which is mainly due to the different characteristics
of synthetic and real training images. We have proposed do-
main adaptation strategy to alleviate this domain shift problem,
and also demonstrated the proposed method’s effectiveness
and superiority in segmentation performance through extensive
experiments on real scribbled documents dataset. These are
achieved by applying adversarial discriminative models to
align feature distribution and entropy minimization to make
network discriminative to real data. Note that there are no
regularization to prevent overfitting and no supervision for real
image, we can conclude that the proposed domain adaptation
strategy alleviates overfitting problem very well. As a future
work, we would like to extend this unsupervised approach
to a semi-supervised one for better performance, explicitly
providing the labels of real scribbled documents.
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