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Abstract—Generally, global active noise control is to minimize
the sum of the energy of the residual sound field. But on some
occasions, we are more concerned that the energy of the residual
noise at every direction does not exceed a certain value. In this
paper, an algorithm for global active noise control is introduced
to achieve a global active acoustic radiation noise control by
minimizing the maximum residual sound energy of the far field
after active acoustic radiation control. The proposed algorithm
adjusts the weights of the secondary sound sources based on the
min-max optimization. Simulation results show that the proposed
algorithm can reduce the maximum of the far-field residual sound
pressure level 2.2 dB more than the maximum of the residual
sound pressure level based on the traditional global acoustic
radiation control algorithm.

I. INTRODUCTION

Active noise control (ANC) uses loudspeakers to generate

sound waves with the same amplitude but opposite phase to

the primary noise, thus achieving noise control at certain error

points [1], [2]. ANC is divided into local ANC and global

ANC [3]. Local ANC reduces the noise at one or several

target points, which has lower system complexity. But the

space of the noise control is limited [4], [5]. Global ANC

controls the noise in a large spatial region. When the primary

sound field is complicated such as in highspeed railways and

aircrafts, the system with the global ANC is complex and the

noise control performance is limited [6], [7]. However, if there

is only one primary sound source, global acoustic radiation

control can be achieved by placing secondary sound sources

of the same magnitude and opposite phase close to the primary

sound source to control the radiation noise [3]. Several control

strategies are proposed to control the acoustic radiation noise

in global spatial region. From 1987 to 1991, Elliott and Nelson

studied the noise reduction of a pair of point sources that

located in the different positions in the space to study the noise

reduction performance of the active acoustic radiation control

[8]-[10]. The results show that global acoustic radiation control

can only be achieved if the secondary source is placed within

half the wavelength of the primary source. Lin discussed

the global noise reduction of a piston system mounted on a

rigid ball in a free field, and genetic algorithm is performed

to choose the position of the secondary sources [11]. Guo

studied the control performance of the traditional algorithm

for active acoustic radiation control when the error points were

at different positions [12]. These methods are to minimize

the sum of the energy of the residual sound field. The total

energy of the residual noise field is indeed reduced. However,

in some cases, we are concerned that the sound energy at every

direction does not exceed a certain value. Gonzalez proposed

an adaptive algorithm for minimizing the maximum squared

output to achieve noise reductions by restraining the power

being supplied to the system [13].

In this paper, to reduce the energy of the residual noise at all

points, a min-max optimization is proposed to achieve a global

active acoustic radiation control. The remainder of this paper is

structured as follows. Chap. 2 derives the traditional algorithm

for global active acoustic radiation control. Chap. 3 derives the

min-max optimization based on Nelder-Mead algorithm [14]

for global active acoustic radiation control. Simulations are

conducted in Chap. 4. And Chap.5 concludes this paper.

II. GLOBAL ACOUSTIC RADIATION CONTROL WITH

TRADITIONAL ALGORITHM

Global active acoustic radiation control places J secondary

sources near the primary source to reduce the energy of the

sound in the entire space. An implement of global active

acoustic radiation control that four secondary loudspeakers

(J = 4) are used is shown in Fig. 1. A primary sound source

is placed at 5 cm in front of the center of a baffle with 0.6

m long and 3 cm wide, and four secondary sound sources are

placed every 10 cm on both sides of the primary sound source.

The hard boundary is chosen as the boundary of the baffle.

Fig. 1. Implement of the global active acoustic radiation control.
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Fig. 2 shows the block diagram of the active acoustic

radiation control. x is the reference signal that feeds to the

primary source. w is the weights of the secondary sources. P
and S is the primary path from the primary source to the error

points, and the secondary paths from the secondary sources

to the error points, respectively. Several error microphones

are arranged at the error points in the far-field. Suppose the

primary noise is periodic noise with 200 Hz. To reduce the

noise in the entire spatial, the weights of the secondary sources

w are adjusted. The sum of the energy of the residual sound

at the far field e2 (θi) =
∥∥p (θi) + rHi w

∥∥
2
, (i = 1 ∼ N) is

minimized. Therefore, the cost function is written as

J1 =
N∑
i=1

E
[
Ti · e2(θi)

]

=
N∑
i=1

E
[
Ti

∥∥p (θi) + rHi w
∥∥
2

] (1)

P

p
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Fig. 2. Block diagram of active acoustic radiation control.

Here, N is the number of the error points. The subscript i
denotes the ith position. Ti is the weight of residual noise at

the ith error position. p (θi) is the primary noise at the ith error

position. θi is the the direction of the ith error microphones.

The vector of the filtered-x signal ri = [ri1, ri2, ri3, ri4] at

the ith error position is constructed, where rij = x ∗ Sij

is the filtered-x signal from the jth secondary source to

the ith error point, and x is the reference signal. Since

the noise to be controlled is periodic, the weights of each

secondary sound source wj (j = 1 ∼ 4) are complex values.

w = [w1, w2, w3, w4]
T

is the weight vector of the secondary

loudspeakers.

To find the optimal w which minimizes the cost function

J1 in Eq. (1) , calculate its derivative with respect to w and

let the derivative be equal to 0. We expand the cost function

J1,

J1 =

N∑
i=1

Ti

[
p∗ (θi) p (θi) +wHr∗i riw

+wHr∗i p (θi) + p∗ (θi) rHi w]

(2)

Therefore,

∂J1
∂w∗ =

N∑
i=1

TiE (r∗i riw + r∗i p (θi))

=
N∑
i=1

E[Rw + p] = 0

(3)

Here, R =
N∑
i=1

TiE
[
riri

H
]

and p =
N∑
i=1

TiE
[
ri

Hp (θi)
]
.

The optimal w1 is derived as

w1 = −R−1p (4)

In general, Ti (i = 1, 2, ..., N) are set as 1, i.e. the weights

of the components at all error positions are same. If we want

to control the noise at one or several certain positions, we can

set the Ti that corresponds to these positions to larger values.

Thus, the components of cost function at these positions have

larger weights.

III. MIN-MAX OPTIMIZATION FOR GLOBAL ACOUSTIC

RADIATION CONTROL

The global noise can be controlled by setting all Ti to

1. However, simulations show that the difference between of

the maximum and minimum of the residual noise is distinct.

We consider that the noise where the residual noise is larger

can be reduced much more at the cost of the noise reduction

where the residual noise is smaller. On some occasions, we are

more concerned that the energy of the residual noise at every

direction does not exceed a certain value. It is difficult to adjust

Ti by selecting a bigger value at a larger residual sound field

and a smaller value at a smaller residual sound field, because

there is no effective algorithm to get the optimal values of Ti.

Therefore, we minimize the maximum the energy of the

residual sound at the far field after active acoustic radiation

control, rather than minimizing the sum of the energy of the

residual sound at the far field. Thus, the cost function is written

as

J2 = minmaxE
[
e2(θi)

]
= min ‖ev‖∞

(5)

Here, ev =
[
E
[
e2(θ1)

]
, E

[
e2(θ2)

]
, . . . , E

[
e2(θN )

]]
. The

optimal vector of w2 that meets the Eq. (5) is solved. However,

this is difficult to find the theoretical optimal solution [15,16].

Therefore, Nelder-Mead algorithm is considered to be used

here to find the numerical solution of the Eq. (5) [14,17].

The numerical optimization with Nelder-Mead algorithm is to

optimize multiple parameters of real numbers, so a vector z
is constructed as

z =
[
real

(
wT

)
, imag

(
wT

)]T
(6)

The iterative update of a simplex made of n + 1 points are

z1, ..., zn+1, and each point is called as a vertice. z2, ..., zn+1

are generated with z1 based on the concept of a simplex. Then

the optimal zopt is derived as follows [17]:
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Algorithm: Nelder-Mead algorithm

1. Sort the vertices by the values of the cost function. Suppose
J2 (z1) ≤ J2 (z2) ≤ ... ≤ J2 (zn+1) .

2. Calculate z0, the centroid of the vertices except zn+1.

3. Calculate the reflected vertice zr = z0 + α (z0 − zn) . If
J2 (z1) ≤ J2 (zr) ≤ J2 (zn+1), zn+1=zr and go to step1. If
J2 (zr) ≤ J2 (z1), ze = zo + γ (zr − zo). Then if J2 (ze) ≤
J2 (zr), zn+1=ze, else zn+1=zr , and go to step 1.

4. Calculate zc = zo + ρ (zn+1 − zo), if J2 (zc) ≤
J2 (zn+1),zn+1=zc, and go to step 1.

5. Replace all vertices except z1, and go to step 1.

6. Stop when the standard deviation of the values of the cost function
is below some tolerance.

Here, α, γ, ρ and σ are the reflection, expansion, contraction

and shrink coefficients, respectively [17]. Since the local

optimum values of the optimization problem near the initial

value is searched, given different initial values will result in

different optimal values of w2. To control the radiation noise

in the entire spatial, the initial value is set as the optimal values

of w1 derived as Eq. (4).

IV. SIMULATIONS AND RESULTS

Simulations are conducted in the 2-D sound field to show

the noise control performance with the two algorithms derived

in Chap. 2 and Chap. 3. One primary sound resource and

four secondary sound resources placed before a baffle which

is shown in Fig. 1 are implemented at the center of the

space. There is no reflection in the surrounding space. 36 error

points are equally spaced at R = 10 m as shown in Fig. 3.

The 180 transfer functions from the primary and secondary

loudspeakers to the error points (5 sound sources to 36 error

points) are obtained with the multiphysics simulation software,

Comsol.

The primary sound resource generates periodic noise with

200 Hz. When the optimal weight of w is obtained with

Eq. (4), the primary noise in the space and the 36 error

points are shown in Fig. 4. The noise radiated by the primary

sound resource can be effectively controlled by active acoustic

radiation control. The noise deduction is 40∼70 dB at these

36 error positions.

However, it is also found that the sound pressure level at

the 20◦ in the residual sound field is 25 dB more than that

at the 40◦ with the traditional algorithm. Difference between

the maximum and minimum of the sound pressure level of

the residual noise with the traditional algorithm is 27 dB.

The optimal weight based on the min-max optimization is

calculated with the initial value that obtained with Eq. (4).

The residual sound field with the traditional algorithm and

min-max optimization is shown in Fig. 5 and Fig. 6. The

maximum sound pressure level of the residual noise at 20◦ is

2.2 dB less than that with the traditional algorithm. Difference

between the maximum and minimum of the sound pressure

level of the residual noise with the min-max optimization is 9

dB, which is 18 dB less than with the traditional algorithm.

Fig. 3. Implement of the global active acoustic radiation control.

Fig. 4. Sound pressure level before and after the active acoustic radiation
control.

TABLE I
VALUES OF COST FUNCTION WITH THE TRADITIONAL ALGORITHM AND

MIN-MAX OPTIMIZATION.

values of cost function J1 J2

traditional algorithm 9.1396× 107 9.4664× 106

min-max optimization 1.1374× 108 5.7022× 106

The values of cost function when the weight of the sec-

ondary sources, w, are calculated with the traditional algo-

rithm and min-max optimization, respectively, are listed in

Table. 1. Although the values of J1 is increased with the min-

max optimization, the values of J2 is decreased.
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Fig. 5. Polar map of the sound pressure level of the residual noise at R = 10
m with traditional algorithm and min-max optimization. (Unit: dB)

Fig. 6. The sound pressure level of the residual noise at R = 10 m with
traditional algorithm and min-max optimization

V. CONCLUSIONS

In order to control the global acoustic radiation noise, an

algorithm for global acoustic radiation control is introduced by

minimizing the maximum residual sound energy of the far field

after active acoustic radiation control. The proposed algorithm

adjusts the weights of the secondary sound sources based on

the min-max optimization. The optimal weight derived as the

traditional algorithm is set as the initial value in the proposed

algorithm. Simulation results show that the difference between

the maximum and minimum of the sound pressure level of

the residual noise with the min-max optimization is 18 dB

less than with the traditional algorithm. The maximum of the

residual noise with traditional algorithm is 2.2 dB less than

that with the min–max optimization.
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