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Abstract—Query-by-example (QbE) keyword spotting is con-
venient for users to define their own keywords, so it is useful
in device control. However, conventional regular softmax, which
is commonly used for training QbE models, has two limitations.
First, the learned features are not discriminative enough. Second,
norm variations of the unnormalized features affect computing
cosine similarities. To address these issues, this paper introduces
normalization and additive margin into residual networks for
QbE keyword spotting. Features and weights are normalized
on a hypersphere of fixed radius. Additive margin further
helps to reduce the intra-class variations and increase inter-class
differences. Based on public datasets AISHELL-1 and HelloNPU,
we design three different test sets, namely in-vocabulary, out-of-
vocabulary, and cross-corpus, to evaluate our proposed method.
Experiments show that our proposed method can learn more
discriminative embedding features. For totally unseen situation,
our proposed method achieves a relative false rejection rate
reduction of 46.60% when the false alarm rate is 2% in cross-
corpus evaluation, compared with regular softmax.

I. INTRODUCTION

Query-by-example (QbE) keyword spotting is the task of
detecting the predefined keyword in a series of speech record-
ings. The most typical application is to activate a device by
a wake-up word. QbE is helpful especially when users want
to define their own special word rather than using the pre-set
phrase. QbE keyword spotting system detects audio segments
directly without the need to build a robust automatic speech
recognition system. Besides, it can easily deal with the out-
of-vocabulary (OOV) and low-resource situations.

Previous studies on QbE methods can be divided into two
categories. One is the dynamic time warping (DTW) based
methods [1], [2], [3] which calculate similarity of the frame-
level feature sequences. However, DTW costs much time and
computation. The other category is the embedding learning
methods which project the acoustic features into a fixed-
dimensional space and evaluate the similarity of embedding
vectors, which is simple but efficient. Several works [4], [5],
[6], [7] demonstrate the success of embedding learning and
it outperforms the DTW in QbE keyword spotting. Besides,
many neural network architectures, such as convolutional
neural networks (CNN) [8], long short-term memory (LSTM)
networks [9], attention-based networks [10], are used as em-
bedding extractor. Usually, regular softmax, namely cross-
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entropy is used for training [5], [7], [10]. Features learned from
the networks with regular softmax loss have an intrinsic angu-
lar distribution with different norms [11], so cosine similarity
is effectively used for testing. To predict whether the speech
contains the query term, the distance between the embeddings
of the same words should be close and vice versa. However,
regular softmax loss can only separate different classes away
without making features of the same class compact, which
leads to a limitation in discriminative feature learning [11],
[12]. Besides, there is a gap left between training and testing,
because the feature representation in training is irrelevant to
the evaluation criterion (cosine similarity) in testing. Yuan et
al. use triplet loss to reduce intra-class distance and increase
interclass distance [13]. However, it is difficult to mine hard
triplets and train networks [14], [15], [16]. Moreover, improper
hard negative mining can lead to collapsed models [17].

Normalization is a helpful method to eliminate the gap
between training and testing. Feature normalization can boost
the performance in facial recognition [18], [19]. Additionally,
additive margin softmax (AM-softmax) [12] is proposed to
improve the softmax loss and works well in facial verification
recently. It introduces an additive margin via subtracting a
hyper-parameter m in the cosine space [20]. It can minimize
the intra-class variation and avoid the hard triplets mining
process at the same time.

This paper introduces normalization and AM-softmax into
QbE keyword spotting to extract the embedding features. Both
weights and features are normalized on a hypersphere. Thus,
the inner product of them is the same as cosine similarity.
Moreover, intra-class distances are reduced by AM-softmax.
This paper also incorporates the residual networks (ResNet)
motivated by its success in image classification [21], [22]
and speaker verification [23]. Cosine similarity is used to
evaluate the similarity. Our experiments are conducted on a
modified AISHELL-1 dataset [24] and HelloNPU corpus [25].
We design three test sets to test the effectiveness in different
situations. They are in-vocabulary set, OOV set, and cross-
corpus set. The results illustrate that normalization with AM-
softmax can improve the performance compared to regular
softmax. At false alarm rate (FAR) of 2%, the false rejection
rate (FRR) is relatively reduced by 79.86% on in-vocabulary
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Fig. 1. The framework for QbE keyword spotting.

set, 68.03% on OOV set, and 46.60% on cross-corpus set,
respectively.

In the rest of the paper, the framework is described in section
2. The proposed methods are described in section 3. Section
4 illustrates the experimental results. Section 5 presents the
conclusions and future work.

II. QBE FRAMEWORK

As shown in Figure 1, in practice, a user can predefine
a specific keyword, and its embedding feature is extracted
by the neural network from the user’s speech recordings. We
name the embedding feature as bottleneck feature (BNF), the
“BNF” in the figure, because it is generated from a layer’s
output. When an audio is inputted, the BNF of it comes out
from the same neural network. Then, the system calculates the
cosine similarity to make a decision whether the audio is the
predefined keyword.

During training, audio segments x,qi, With labels l4-qin are
used to train a classifier. The structure before the softmax layer
projects the input data to the fixed-dimensional embedding
features. The softmax layer matches the embedding features
to each label to train the neural network. As demonstrated
on the left of contrast, for conventional architecture, the loss
function is regular softmax loss. The softmax is removed at
test stage.

The regular softmax loss is as follows:
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where y is the input of the softmax layer and is used as BNF.
Vector w is the weight which stands for the prototype of the
class. Subscripts ¢ and j denote the i-th or the j-th sample.
k and n donote the sizes of classes and samples, respectively.
One class corresponds to one output label. According to vector
inner product formula, we expand the formula out and get 0
as the intersection angle. Thus, the softmax operation can be
viewed as a similarity evaluation between samples and labels
to help train the network.
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Fig. 2. The left conventional architecture is trained with regular softmax loss,
and the right one introduces normalization and AM-softmax loss. The blue
parts are the networks: residual block x 6 means that six residual blocks are
stacked. The parts with dashed line show the training methods.

When it comes to testing, the system calculates cosine
similarity of the BNF for every audio pair. Then it comes out a
“same or different” prediction based on a particular threshold.
If the similarity score is over the threshold, the keyword is
detected.

III. HYPERSPHERE EMBEDDING AND ADDITIVE MARGIN
METHODS

Our goal is to verify the keyword from large amount of
speech. But the embedding features learned by regular soft-
max loss are not discriminative enough. Besides, the various
norms of the embedding features influence the performance
of keyword spotting. Thus, normalization and AM-softmax
are employed in ResNet. contrast shows our methods in
comparison to the conventional training method.

A. Normalizatin operation

Hypersphere embedding is done by normalization operation,
simply but effectively. As shown in Figure 3(b), both the
feature vectors y (the “x” marks in Figure 3(b)) and the
weight vectors w are normalized on a unit hypersphere. For
convenience, we just take a unit circle and two-dimensional
problem as example. We name the weight vectors as the
prototypes of each classes. Compared with the unnormalized
one in Figure 3(a), radial variations of the vectors are removed.
Thus, the calculation can just focus on the angular similarity.
The smaller intersection angle between the feature vectors and
prototypes, the higher possibility they are the same classes.
If without normalization, there will be a confusion that the
vectors with small norms have huge variation in angle although
their Euclidean distances are small. This confusion can result
in higher errors in testing under the cosine metric [19].

Hypersphere embedding avoids radial variations. Besides,
after normalization, the inner product operation wy of softmax
becomes the cosine calculation, compatible with the cosine
similarity.
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softmax: the “x” marks represent the embedding vectors of samples. Different
colors correspond to different labels.

B. AM-softmax loss function

In addition to eliminating radial variations, the cosine sim-
ilarity scores between embeddings of the same classes should
be as high as possible, and the cosine similarity scores between
embeddings of different classes should be as low as possible.
Then, larger margin will be left for judgment. This can be
done by AM-softmax.

In AM-softmax loss, a cosine margin m is introduced. The
function of AM-softmax is as follows:
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All the symbols stand for the same meaning as in section 2. m
is the additive margin. s is the scaling factor. Since the vectors
y and w are normalized, wy = cosf. Cosine values can be
calculated directly. The benefits of the margin subtraction are
obvious. Because an additive margin m is subtracted from
cos 6, the value of AM-softmax is less than the corresponding
regular softmax one. If the value of cos § —m wants to be the
same as the regular softmax, a larger cosine value is needed.
Thereby the distance between the sample of the same label
will be more compact and the intra-class differences will be
reduced. Besides, a hyper-parameter s is used to scale the
cosine values to yield better-performing features [18], [26].
AM-softmax loss can converge easier with proper scaling
factor s.

Actually, the decision boundary is optimized in the cosine
space rather than the angular space [20]. But the boundary in
the cosine space is the same as the boundary in the angular
space because there is a one-to-one mapping between ¢ and
cosf (0 < € < m). To describe the AM-softmax function
more simply and intuitively, the cosine margin is shown in
the angular space in Figure 3(c).

We denote w; as the prototype of corresponding class and
P; as the decision boundary. Taking two-dimensional problem
as examples, Figure 3(a) is a schematic of regular softmax.
The decision boundary of two classes is Py and the norms
of two prototypes are different. As for AM-softmax in Figure
3(c), the decision boundary becomes a decision margin rather

18-21 November 2019, Lanzhou, China

than one simple vector boundary Py [12]. The decision margin
between class 1 for class 1 is from P; to P,. From the
formula,m, wehave cos 0y, p, — M = waPr — m = w1 Py.
Thus, m = w1 P, — wo Py = wy Py — w1 Py. The differences
between the cosine scores for the adjacent decision boundaries
should be the margin m. The larger the margin, the larger the
difference.

IV. EXPERIMENTS
A. Datasets

Since there is few publicly available dataset used for QbE
keyword spotting, we develop our new dataset based on the
existing AISHELL-1 dataset [24] and HelloNPU corpus [25].
According to the data preparation idea in the work of A.
Jansen er al. [27], we select speech segments from the forced
alignments of transcripts. The duration of the segments are
at least 0.5 seconds and not exceeding 1 second. The labels
contains at least 2 characters as texts. We choose the segments
with the frequency of the top 5,000. Then we divide them into
disjointed sets named as training set and development set, in-
cluding 200,095 utterances and 25,604 utterances, respectively.

For evaluation, we design 3 types of sets including in-
vocabulary set, OOV test set, and cross-corpus test set. Since
the cross-corpus set is a totally different dataset whose data
source and related field are completely irrelevant to AISHELL-
1 dataset, we can have a further evaluation of our methods.
Each test size is made up of 20,000 speech segment pairs.
Half of them are positive and half of them are negative, which
means half of them have the same labels and half of them have
different labels. The details are as follows:

In-vocabulary test set: It has 20,000 segment pairs whose
labels have occurred in the training set.

OOV test set: It has 20,000 segment pairs whose labels are
out of that 5000 labels.

Cross-corpus test set: It has 20,000 segment pairs and
comes from HelloNPU corpus that used for wake-up word
detection, a related case of keyword spotting. We choose the
keyword “Hello xiaogua” and other speech utterances that
do not contain the keyword. Each positive pair involves the
keyword “Hello xiaogua” from two different speech utterances
and each negative pair involves the keyword “Hello xiaogua”
and another non-keyword utterance.

B. Experimental setup

We employ the ResNet in our experiments, which consists
of 6 blocks. Each block contains two 3 x 3 convolution layers
with batch normalization. The architecture is illustrated on the
right of contrast. We extract the 40-dimensional Mel-frequency
cepstrum coefficients (MFCCs) of input audio and pad them to
99 frames. Thus, the input size is 99 x 40. After normalization,
the ResNet generates the 45-dimensional BNF. We use Adam
optimizer to train the ResNet for 25 epochs and the initial
learning rate is set to 0.1. After each epoch, if the improvement
of accuracy on development set is less than 1%, the learning
rate is reduced by a factor of 0.7. The mini-batch size is
32. Since the network is more difficult to converge to the
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Fig. 4. DET curves of the experiment results.

optimal values with hyper-parameter m, we increase the hyper-
parameter m linearly after each training epoch. Until the 15th
epoch, we fix it to the target margin.

C. The comparison of different margins

We firstly investigate how margin m affects the performance
of QbE keyword spotting. We select several representative
values of margin m = [0,0.05,0.1,0.15,0.2,0.25,0.3,0.35]
to train the network and evaluate them on the OOV test set.
m = 0 means that we just employ the normalization for both
feature and weight vectors without cosine margin. m # 0
means we employ both normalization and additive margin.
The result is plotted in Figure 4(a). From the detection error
tradeoff (DET) curves, we can see that from m = 0.05 to
m = 0.2, the larger the margin, the better the performance.
And the best performance is achieved when m = 0.2.
Although m = 0.1 performs similarly to m = 0.05 and
m = 0.25,0.3,0.35 performs worse than m = 0.2. All the
nonzero values contribute to an improvement in QbE keyword
spotting tests more or less compared to the zero value. This is
because that the margin m reduces the original cos ¢, making
the network learn more compact feature representations of the
same classes.

Then, we choose the best performance margin value m =
0.2 and compare it to the regular softmax loss function on all
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of the 3 test sets. Furthermore, we also study the benefits of the
normalization and margin. So m = 0,0.2 and regular softmax
are all displayed in the figures. For convenience, we call m =
0 as “normalization” and call m = 0.2 as “normalization +
margin”.

D. The effect of normalization

From Figure 4(b), Figure 4(c), and Figure 4(d), we can the
“normalization” performs better than the network trained with
regular softmax on all of the test sets. For example, at false
alarm rate (FAR) of 2%, the FRR of “normalization” relatively
reduces by 60.20% on in-vocabulary set, 57.97% on OOV set,
and 20.93% on cross-corpus set.

E. The effect of normalization with additive margin

Figure 4(b), Figure 4(c), and Figure 4(d) also demonstrate
the improvement of “normalization + margin”. The perfor-
mance achieves increasingly better from regular softmax to
“normalization”, and from ‘“normalization” to ‘“normalization
+ margin” on all of the test sets. In terms of “normalization +
margin”, at FAR of 2%, the FRR of “normalization + margin”
relatively reduces by 79.86% on in-vocabulary set, 68.03%
on OOV set, and 46.60% on cross-corpus set compared to the
regular softmax. All the relative reductions of “normalization
+ margin” are more than “normalization”, especially on the
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cross-corpus set. Thus, additive margin can further improve
the performance of networks on the basis of normalization.

F. Discussions

From the above experiments, our proposed methods show
improvement over the conventional regular softmax for key-
word spotting. These are attributed to two reasons. First,
normalization helps neural networks focus on angular opti-
mization that is more compatible to the test metric. Comparing
to the regular softmax, which implicitly learns features from
both Euclidean norm and angle, normalization eliminates the
variations in Euclidean norm and constrains the features on
hypersphere. Second, the margin m helps to reduce the intra-
class distance and, moreover, leads to more discriminative
feature learning. Figure 4(b), Figure 4(c), and Figure 4(d) all
show that “normalization” outperforms the regular softmax,
and “normalization + margin” further improves the perfor-
mance of “normalization”.

V. CONCLUSIONS

This paper introduces the normalization operation and
additive margin into QbE keyword spotting tasks to learn
discriminative embedding features. These have an intuitive
geometric interpretation and simple to execute in practice.
From the experiments on AISHELL-1 dataset and HelloNPU
corpus, normalization with additive margin achieves significant
improvements compared to the regular softmax loss. Besides,
the performance on cross-corpus test set demonstrates its
robustness. At the FAR of 2%, it reduce 46.60% relative FRR
in comparison with the regular softmax. In the future, we will
find a more stable method to train AM-softmax.
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