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Abstract—Singing voice conversion (SVC) is a task to convert
the source singer’s voice to sound like that of the target
singer, without changing the lyrical content. So far, most of the
voice conversion studies mainly focus only on the speech voice
conversion that is different from singing voice conversion. We
note that singing conveys both lexical and emotional information
through words and tones. It is one of the most expressive
components in music and a means of entertainment as well as
self expression. In this paper, we propose a novel singing voice
conversion framework, that is based on Generative Adversarial
Networks (GANs). The proposed GAN-based conversion frame-
work, that we call SINGAN, consists of two neural networks:
a discriminator to distinguish natural and converted singing
voice, and a generator to deceive the discriminator. With GAN,
we minimize the differences of the distributions between the
original target parameters and the generated singing parameters.
To our best knowledge, this is the first framework that uses
generative adversarial networks for singing voice conversion.
In experiments, we show that the proposed method effectively
converts singing voices and outperforms the baseline approach.
Index Terms: Singing voice conversion, generative adversarial
networks, singing voice

I. INTRODUCTION

Professional singers are believed to be good at controlling
their voice timbre. However, they usually have a difficulty
to change their voice to sound like that of another, due to
the physical constraints of speech production. Singing voice
conversion provides an extension to one’s vocal ability to
control the voice beyond physical constraints and express in
an extended variety of ways.

Singing voice conversion is defined as the task of converting
a song of a source singer to sound like the voice of a
target singer without changing the linguistic content. Singing
voice conversion has seen many practical applications such as
singing synthesis, dubbing of movies and enabling singers to
sing songs with their desired voice timbre, etc. We note that
the task of singing voice conversion is related to both singing
voice synthesis and speech voice conversion.

The interest to singing voice synthesis [1]–[6] has been
growing recently in the field of computer-based music technol-
ogy. By entering notes and lyrics to a singing voice synthesis
system, one can generate a synthesized singing voice with
a specific singer’s voice identity. This new technology has
created opportunities for new and innovative music products
and services.

Singing Voice 
Conversion 

Source Singer Target Singer
Mapping  

Model 

Fig. 1. Singing voice conversion is trained with singing data from source and
target singers.

Singing voice conversion and conventional speech voice
conversion are similar in many ways. Both techniques trans-
form the person-dependent traits from source to target and
carry over the person-independent content. We note that in
speech voice conversion, prosody, that includes pitch, dynam-
ics, duration of words, etc., contains important information
about the speaker identity. Therefore, to achieve high quality
voice conversion, the prosody should be transformed from the
source speaker to the target speaker [7]–[10]. However, in
singing voice conversion, the manner of singing is primarily
determined by the sheet music itself, therefore, is considered
as person-independent. In this case, only the characteristics
of voice identity, such as the timbre, are considered as the
person-dependent traits to be converted [11]–[15]. Hence, in
this paper, we only focus on spectrum conversion.

The early studies on voice conversion marked a success
by training a mapping function to convert the source speech
to target speech with parallel training data, such as Vector
Quantization (VQ) [16], codebook mapping [17], Gaussian
Mixture Model (GMM) [18], partial least square regression
[19], dynamic kernel partial least squares regression (DKPLS)
[20], and non-negative matrix factorization (NMF) based voice
conversion frameworks [9], [21], [22]. Benefiting from deep
learning, voice conversion technology has advanced rapidly,
providing high voice quality and speaker similarity [10], [23]–
[26].

There have been some traditional statistical approaches for
training a function that maps the singing vocal of a source
singer to that of a target singer. The mapping function is
trained to associate the spectral features between the source
and target singer as illustrated in Figure 1. GMM-based direct
waveform modification [11], [12], [28] technique, concate-
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Fig. 2. System diagram of the traditional Generative Adversarial Networks [27].

native singing voice conversion [13], GMM-based spectrum
mapping for VOCALOID singing synthesizer [29], GMM-
based voice conversion with vocal tract area function [14] and
many-to-many eigenvoice conversion [15] are the traditional
singing voice conversion frameworks, that achieve high-quality
converted singing voice. The statistical approaches have ben-
efited from the success of speech voice conversion.

We notice that deep learning approaches have not become
very popular in singing voice conversion yet. Only recently, a
DBLSTM-based singing voice conversion [30], that uses PPGs
[22] for the mapping function, was studied. PPGs, derived
from a speech recognition system, represent the posterior prob-
ability of the speech frame with respect to the phonetic classes,
that are believed to be speaker independent [23], [31]. We note
that DBLSTM with PPGs is a clever solution to speech and
singing [30] voice conversion with non-parallel training data.
However, it works with a speech recognition system, therefore,
hinges on the quality of the speech recognition.

In this paper, we propose the use of generative adversarial
network for singing voice conversion, that doesn’t require a
speech recognition system. Generative Adversarial Network
(GAN) is a generative model that can learn a complex relation-
ship between source and target features through an adversarial
process. Recently, GANs have been successfully used in
many fields such as image-to-image translation [32], speech
recognition [33], and speech enhancement [34]. Moreover,
GAN-based models such as GAN+WaveNet [35], VAW-GAN
[36] and CycleGAN [37], [38] have shown to be effective
in speech voice conversion. As GAN performs well with
a smaller amount of training data than other deep neural
networks, we hope to achieve high quality converted singing
without the need of large training data.

The main contributions of this paper include, 1) we propose
a novel singing voice conversion framework, that is based
on Generative Adversarial Networks, 2) by using GAN, we
eliminate the need of any external process, such as speech
recognition, and reduce the reliance on large amount of
training data, and 3) we achieve high quality singing voice
that outperforms other DNN-based techniques. To our best
knowledge, this paper reports the first successful attempt to use
Generative Adversarial Networks in singing voice conversion.

This paper is organized as follows: In Section 2, we describe
the Generative Adversarial Networks. In Section 3, we present
our novel singing voice conversion framework. We report the

experiments in Section 4 and conclude in Section 5.

II. GENERATIVE ADVERSARIAL NETWORKS (GANS)

A generative adversarial network [27] consists of a gener-
ator and a discriminator D(x; θD), where θD is the model
parameters for the discriminator. In this structure, generator
basically serves as a mapping function from distribution of
source to distribution of target. The posterior probability
of an input x being a natural data, can be obtained by
taking the sigmoid function from the discriminator’s output,
1/(1 + exp(−D(x))). The discriminator is trained to make
the posterior probability 1 for natural data and 0 for generated
data, while the generator is trained to deceive the discriminator.
The system model of a traditional Generative Adversarial
Network is given in Figure 2.

Generative adversarial networks have recently been shown
to be an effective training method and have become popular
in many fields such as image generation [39], image synthesis
[39], speech enhancement [34], language identification [40],
and text-to-speech synthesis [41]. Moreover, GANs have been
recently used for speech voice conversion [35], [42] and
achieve remarkable performance in terms of voice quality
and speaker similarity. More recently, GAN-based speech
voice conversion techniques include VAW-GAN [36], Cycle-
GAN [37], CycleGAN-VC2 [43] and STARGAN-VC [44]
that achieve remarkable performance with nonparallel training
data. In this paper, we propose to use GANs for high-quality
singing voice conversion.

III. GANS FOR SINGING VOICE CONVERSION

In this section, we explain the technical steps of our pro-
posed GAN-based singing voice conversion framework. With
parallel training data, we use source and target singing spectral
features as the input for the generative adversarial network, we
therefore call the proposed framework as SINGAN.

Singing voice conversion is a challenging task as the
modeling and the conversion of singing spectrum is not
straightforward. Moreover, singing is a form of art, and any
distortion on the converted singing voice cannot be tolerated.
To achieve high quality singing voice, there have been some
statistical methods that are based on GMM [11], [12], by using
parallel data. The furtherance in deep learning has a positive
impact in many fields, that also include speech synthesis and
voice conversion. However, deep neural networks have not
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Fig. 3. The training phase of the proposed GAN-based singing voice conversion framework. Source and target speakers sing the same songs during training
phase.
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Fig. 4. The run-time phase of the proposed GAN-based singing voice conversion framework for inter-gender source and target singers.

been well explored for singing voice conversion. To our best
knowledge, this paper is the first to propose a GAN-based
singing voice conversion framework.

SINGAN shares similar motivation with [30] regarding the
use of deep learning in singing voice conversion. However,
it differs from [30] in many ways, for example: 1) The
fundamental difference is that we train a generative adversarial
network to learn a mapping between source and target singers,
while [30] uses DBLSTM to learn this mapping; 2) With
SINGAN. we study a one-to-one singing voice conversion
system with a small parallel training set, while [31] studies
a many-to-one conversion with a large amount of non-parallel
training data. 3) SINGAN does not hinge on automatic speech
recognition (ASR) performance, while the approach in [30]
performs mapping in between spectral features and PPGs, that
are the intermediate results of an ASR system.

A. Training Phase

The training phase of the SINGAN framework is given
in Figure 3. The training process involves three steps: 1) to
perform WORLD analysis to obtain the spectral and prosody
features, 2) to use dynamic time warping algorithm for tem-
poral alignment of source and target singing spectral features,
and 3) to train the generative adversarial network by using the
aligned singing source and target features.

We propose to use GANs to learn the essential differences
between the source singing and the original target singing
through a discriminative process. Our GAN structure con-
sists of two DNNs, that are iteratively updated by minibatch
stochastic gradient descent. The discriminator, that we use in
this paper can be seen as a DNN-based anti-spoofing system
that distinguishes between natural and synthetic singing voice.

B. Run-time Conversion Phase

The run-time conversion phase of SINGAN is given in
Figure 4. The run-time conversion phase also has 3 steps as
follows: 1) to obtain source singing features using WORLD
analysis, 2) to generate the converted singing spectral features
by using the GAN, that is already trained, and 3) to generate
the converted singing waveform by using WORLD synthesis.

In this paper, during the run-time conversion phase, we
only convert the spectral features with the trained generative
adversarial network. Previous studies [28] suggest that, in
intra-gender SVC, such as male-to-male and female-to-female
singer identity conversions, it is not always necessary to
transform F0 values of the source singer to those of the target
singer, because both singers often sing on key. Moreover, the
conversion of aperiodicity usually has only a small impact on
the converted singing voice. Therefore, it suffices to only per-
form spectral feature conversion to achieve acceptable singing
voice quality. In this paper, we do not perform F0 conversion
for intra-gender SVC experiments. However, for inter-gender
SVC experiments, we perform linear F0 conversion that is to
normalize the mean and variance of the source speaker’s F0
to that of target speaker.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed
singing voice conversion algorithm in terms of spectral feature
conversion. We conduct both objective and subjective evalu-
ations to compare the proposed SINGAN with a traditional
DNN-based voice conversion framework.

A. Experimental Conditions

We conduct experiments on NUS Sung and Spoken Lyrics
Corpus (NUS-48E corpus) [45] to assess the performance of
the proposed SINGAN framework. The corpus consists of
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Frameworks Gender Information Training Data (# song pairs) MCD [cv] MCD [source]

DNN-based Baseline male-to-male
3 6.15 6.81
5 5.98 6.68
7 5.73 6.49

SINGAN male-to-male
3 5.81 6.45
5 5.52 6.27
7 5.36 6.03

DNN-based Baseline female-to-male
3 6.32 7.12
5 6.12 6.83
7 5.89 6.65

SINGAN female-to-male
3 5.97 6.58
5 5.74 6.38
7 5.53 6.12

TABLE I
A SUMMARY OF THE COMPARISON BETWEEN THE DNN-BASED BASELINE FRAMEWORK, AND THE PROPOSED SINGAN FRAMEWORK. WE CONDUCT
EXPERIMENTS WITH 3, 5 AND 7 SOURCE-TARGET SONG PAIRS TO SHOW THE EFFECT OF LIMITED TRAINING DATA. IN ALL EXPERIMENTS, PARELLEL

DATA HAVE BEEN USED DURING TRAINING.

audio recordings of the sung and spoken lyrics of 48 English
songs by 12 professional singers. To assess the effect of
limited data, we conduct experiments with 3, 5 and 7 source-
target singing pairs. We use the WORLD vocoder [46] for
feature analysis and synthesis. We extracted 34 Mel-cepstral
coefficients (MCEPs), logarithmic fundamental frequency (log
F0), and aperiodicities (APs) every 5 ms by using the WORLD
analyzer. For preprocessing, we normalize the source and
target MCEPs to zero-mean and unit variance by using the
statistics of the training sets. The silent frames are removed
from the training data in order to increase training accuracy.

The proposed SINGAN is used to convert MCEPs (Q
= 34 + 1 dimensions including 0th coefficient). Therefore,
the objective of our experiments is to analyze the quality
of the converted MCEPs. We directly copy the aperiodicity
from source speaker. For intra-gender experiments, we do not
perform F0 conversion, while for inter-gender experiments we
perform linear F0 conversion that is to normalize the mean and
variance of the source speaker’s F0 to that of target speaker.
Dynamic time warping was used to align total frame lengths
of the input and output speech parameters.

The proposed SINGAN structure consists of two DNNs,
that are iteratively updated by minibatch stochastic gradient
descent. In the experiments, we construct DNNs for male-to-
male and female-to-male singing voice conversion. The hidden
layers of the generator and discriminator have 3 ∗ 512 units
and 3 ∗ 256 units, respectively. The discriminator, that we use
in this paper can be seen as a DNN-based anti-spoofing system
that distinguishes between natural and synthetic singing voice.

B. Singing Voice Conversion with DNNs as a Baseline

As a baseline, we choose to use deep neural network (DNN)
approach [47] to singing voice conversion. Our aim is to find
a mapping between source and target singers by using parallel
training data. Similar to that of SINGAN, we extracted 34
Mel-cepstral coefficients (MCEPs), logarithmic fundamental
frequency (log F0), and aperiodicities (APs) every 5 ms by
using the WORLD analyzer. We then normalized the source
and target MCEPs to zero-mean and unit variance by using
the statistics of the training sets. During training, we first use

SNR	(dB)

Signal-to-Noise	Ratio

2.15

2.47

2.08

2.26

DNN	(m-m)

SINGAN	(m-m)

DNN	(f-m)

SINGAN	(f-m)

0 0.5 1 1.5 2 2.5 3

Fig. 5. Comparison of the SNR results between the proposed SINGAN
and DNN-based baseline singing voice conversion framework. In all of the
experiments, 7 songs, that are from the source and target singers, have been
used as training data.

a dynamic time warping algorithm to temporally align source
and target singing features. We then train a DNN by using
these aligned source and target singing features, that is in
a similar way to the conventional speech voice conversion.
In the experiments, we constructed DNNs for male-to-male
conversion and female-to-male conversion. The hidden layers
of the DNN have 3 ∗ 512 units. We note that DNN-based
approach has been widely used as a baseline for GAN-based
speech synthesis and voice conversion frameworks [41].

C. Objective Evaluation

We adopt the Mel-cepstral distortion (MCD) [28] between
(1) the MCCs of source singer’s natural singing and the
converted MCCs, that is denoted as MCD[source] and (2)
the MCCs of target singer’s natural singing and the converted
MCCs, that is denoted as MCD[cv]. MCD values are calcu-
lated as follows:

MCD[cv] =
10

log 10

√√√√2
35∑

m=1

(ct(m)− ccv(m))
2 (1)

MCD[source] =
10

log 10

√√√√2
35∑

m=1

(cs(m)− ccv(m))
2 (2)
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Fig. 6. Singing voice conversion is trained with singing data from source and
target singers. Both frameworks are trained with 7-7 source-target song pairs.

where ccv(m), ct(m) and cs(m) are the mth coefficients of
the converted singing MCCs, target singing MCCs, and source
singing MCCs, respectively. We calculate the MCD values
frame-by-frame over all the paired frames in the test set, and
report the average MCD values. We note that a lower MCD
value indicates smaller spectral distortion.

Moreover, we report the signal to noise ratio (SNR) [35]
between converted singing waveform and target singing wave-
form. SNR values are calculated as follows:

SNR[dB] = 10 log10

( ∑N
n=1 x(n)

2∑N
n=1(x(n)− y(n))2

)
(3)

where x(n) is the converted singing waveform, and y(n) is the
target singing waveform at time n. The objective evaluation
results are shown in Table 1 and Figure 5.

In Table 1, we report the MCD[source] and MCD[cv]
under different training settings. We would like to compare the
proposed SINGAN and the DNN-based baseline framework
in terms of training data size and gender of the singers.
Firstly, we see that SINGAN outperforms the DNN-based
approach by achieving lower MCD[cv] and MCD[source]
in all cases. Secondly, the proposed SINGAN achieves better
performance in intra-gender singing voice conversion, that is
also consistent with the DNN-based approach. Thirdly, we
observe that MCD[cv] is always lower than MCD[source].
The results suggest that SINGAN framework generates a
singing spectrum, that is more similar to the original target
singer. Last but not least, we would like to note that the
proposed SINGAN can work remarkably well with limited
amount of parallel data and outperforms the baseline in all
settings. For example, SINGAN (male-to-male) with 3 song
pairs achieves the MCD[cv] value of 5.81, while baseline
DNN (male-to-male) achieves the MCD[cv] value of 5.98
with 5 song pairs.

In Figure 5, we report the SNR values under different
training settings. We can see that SINGAN always outperforms
the DNN-based baseline framework by achieving higher SNR,
that is also consistent with the previous experiments. We can
also see that intra-gender singing voice conversion achieves
better performance than inter-gender singing voice conversion,
both in DNN-based approach and SINGAN.

Preference	Score	(%)

Preference	Test

DNN

SINGAN

0 10 20 30 40 50 60 70 80

Fig. 7. Singing voice conversion is trained with singing data from source and
target singers. SINGAN is trained with 5-5 source and target song pairs while
DNN is trained with 7-7 source and target song pairs.

D. Subjective Evaluation

We conduct two listening experiments to assess the perfor-
mance of the proposed SINGAN for singing voice conversion,
in terms of voice quality and speaker similarity. 20 subjects
participated in all the listening tests. Each subject listens to
30 converted singing samples.

Firstly, we evaluate the sound quality of the converted voices
with mean opinion score (MOS), that is reported in Figure 6.
The listeners rate the quality of the converted voice using a
5-point scale: 5 for excellent, 4 for good, 3 for fair, 2 for
poor, and 1 for bad. We compare SINGAN and DNN in terms
of singing voice conversion performance. We use 7 source
target song pairs to train the SINGAN and the baseline DNN
framework. As can be seen, SINGAN outperforms the DNN-
based baseline framework by achieving the MOS value of 3.89
±0.11.

We further conduct preference test, that is reported in Figure
7, to compare SINGAN with DNN baseline, in terms of
speaker similarity. To show the capability of our proposed
framework under limited data, we use 7 song pairs for DNN
training, while we only use 5 song pairs for SINGAN training.
We show that SINGAN outperforms the DNN-based approach
in terms of speaker similarity, even with less training data, as
it is chosen as the better sample for (66.8± 2.2) percent of
the time. Singing samples can be found in the following link:
https://sites.google.com/view/berraksisman/.

V. CONCLUSION

In this paper, we propose a novel singing voice conversion
framework, that is based on generative adversarial networks.
The proposed approach performs remarkably well with very
limited parallel training data from both singers. In the experi-
ments, we outperform the baseline and achieve high-quality
singing voice. We believe that proposed approach produce
good results and can even serve as baseline SVC framework
in the future.

We have also tried applying generative adversarial networks
for singing voice conversion with nonparallel data and have
obtained some good preliminary results. More investigation
on the parallel-data-free singing voice conversion will be
conducted in the future.
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