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Abstract—This paper presents a location-independent multi-channel
acoustic scene classification (ASC) system that avoids spatial overfitting.
Generally, ASC suffers from noise and reverberation in real environ-
ments. In addition, the ASC performance is decreased by overfitting a
dataset, which is the result of learning from acoustic transfer functions
enclosed in the dataset. To resolve these problems, we present a location-
independent multi-channel ASC system using blind dereverberation,
blind sound source separation, pre-trained model-based classifiers, and
model ensemble. Experimental results on the DCASE 2018 Task 5 dataset
indicate that the proposed system, with an F1 score of 88.4%, outperforms
the baseline system. Also, the results indicate that although no one
specific function improves the performance dramatically, all functions
complement each other through the model ensemble.

Index Terms—acoustic scene classification, blind dereverberation, blind
source separation, pretrained model, model ensemble

I. INTRODUCTION

Multi-channel acoustic scene classification (ASC) is a technology
that classifies an audio signal into a predefined class characterizing
the environment in which it was recorded. It is expected to be
used for machine health monitoring and other applications. In real
environments, ASC suffers from noise and reverberation, whereas
multi-channel ASC can solve this problem by using a microphone
array.

The purpose of this paper is to propose a “location-independent”
multi-channel ASC. Location-independence means robustness to the
change of acoustic transfer functions (ATFs). In real scenarios, ATFs
differ between a training and evaluation datasets because locations of
sources and microphones may change. If the ATFs enclosed in the
training dataset are learned as they are, spatial overfitting will occur,
i.e., the performance for the evaluation dataset tends to be severely
degraded due to the change of cues for ASC. In addition to the spatial
overfitting, overfitting is caused by other factors [1][2]. Robustness
is required against both spatial overfitting and overfitting caused by
other factors.

We present a novel location-independent multi-channel ASC sys-
tem consisting of pre-processing, classifiers, and model ensemble.
The core idea of this paper is that various pre-processing and classi-
fiers each have strengths and weaknesses, i.e., Harmonic-percussive
sound separation (HPSS) [3][4] is suitable for ASC but may overfit.
Pre-processing uses blind dereverberation (BD) [5], blind sound
source separation (BSS) such as Duong’s BSS [6] and HPSS and, a
beamformer [7]. On the basis of these pre-processing algorithms, the
proposed system solves the problem of noise and reverberation and
avoids spatial overfitting. In addition, classifiers use a pre-trained
convolutional deep neural network (CNN) model, VGG16 [8], to
classify images. By using VGG16, the proposed system avoids both
spatial overfitting and overfitting caused by other factors. Moreover,
the model ensemble is the core method of the proposed ASC system

to improve the robustness by fusing the strengths of pre-processing
and classifiers.

In the experiment section, we verify the effects of the proposed
system on ASC performance using the DCASE 2018 Task 5 [9]
dataset [10]. The dataset was recorded in an indoor environment,
and the audio signals in the dataset include a lot of noise and
reverberation. Experimental results indicate that the proposed system,
with an F1 score of 88.4%, works well when locations of sources and
microphones may change, outperforms the baseline system, and tied
for first place in DCASE 2018 Task 5. In addition, results indicated
that no one specific function implemented as pre-processing or a
classifier improves the performance dramatically, but all functions
complement each other through the model ensemble.

II. RELATION TO PRIOR WORK

To achieve location-independent multi-channel ASC, the proposed
system has the unique point that it uses dereverberation such as
Togami’s BD [5]. In ASC, many works [7][11][12] are related to
the proposed system, but dereverberation is not used in the previous
works. Han and Park [7] achieved second place in DCASE 2017
Task 1 using binaural audio, HPSS, background subtraction, and
model ensemble. Sakashita and Aono [11] used binaural audio,
monaural audio, HPSS, mixup-based [13] data augmentation, and
model ensemble and took first place in DCASE 2018 Task 1. Inoue
et al. [12] aimed to solve the same problem as this paper by using data
augmentation, and their system tied with the proposed system for first
place in DCASE 2018 Task 5. In addition, although there are several
works [14][15] on ASC based on an image classification model, there
is no work on ASC based on a combination of dereverberation and an
image classification model such as VGG16. Mun et al. [14] reported
the effect of the transfer learning for a model pre-trained by ImageNet
dataset [16]. Hwiyong et al. [15] suggested that VGG16 [8] could be
used for ASC.

The main contribution of this paper is examining the effectiveness
of the proposed system architecture. In the previous work [17], we
verified only the feasibility of the proposed system, so this paper
studies its details and effectiveness.

III. DCASE 2018 TASK 5 DATASET

We use the DCASE 2018 Task 5 dataset for training and evaluation.
The dataset contains real life audio recorded in an indoor environment
using a 4-channel microphone array. It has nine audio classes:
“Absence,” “Cooking,” “Dishwashing,” “Eating,” “Other,” “Social
activity,” “Vacuum cleaning,” “Watching TV,“ and “Working.” As the
audio signals include a lot of reverberation and various noises, the
system needs to use dereverberation and sound source separation for
robustness. The microphone array’s positions in the training dataset
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Fig. 1. Layout of the proposed system

and evaluation dataset are different. Therefore, the dataset is suitable
for evaluating the proposed system.

IV. LOCATION-INDEPENDENT MULTI-CHANNEL
ACOUSTIC SCENE CLASSIFICATION

In this section, we first present an overview of our proposed
location-independent multi-channel ASC system and then describe
it in more detail.

A. Overview

The proposed system is structured into pre-processing, classifiers,
and model ensemble. Fig. 1 shows the system overview.

First, in pre-processing, the proposed system uses BD and BSS.
Considering that the source position of the audio can differ, as
mentioned in Section III, the system uses a blind algorithm for
location independence. In addition, machine learning is not used
to avoid overfitting. After pre-processing, various processed audio
signals are input to the classifiers.

Second, in the classifiers, a CNN is used. As previously mentioned,
when using machine learning, overfitting can cause ASC performance
to worsen. To avoid this, we use an open-source pre-trained model.
By using this model, the proposed system reduces learning of the
dataset to a minimum. The proposed system uses a pre-trained two-
dimensional CNN (2DCNN) and a one-dimensional CNN (1DCNN)
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trained by the dataset. The various classifiers predict the audio classes
from the pre-processed signal in parallel, and the output is used for
the model ensemble in a later step.

Finally, in the model ensemble, the audio class is determined from
a lot of prediction results generated by many pre-processing functions
and various classifiers outputs. Since the contributions to the final
decision for each classifier are decreased and the various predictions
are combined, the proposed system avoids overfitting.

B. Pre-process

For BD, the proposed system uses Togami’s BD algorithm [5],
which is a multi-input-multi-output (MIMO) method. In the system,
a 4-channel audio signal Sin

i (i = 1, ..., 4) is input, and a 4-channel
dereverbed audio signal Sd

i is output. Furthermore, reverberation Sr

is generated from Sin
i and Sd

i .
In addition, the system uses Duong’s BSS method [6]. Duong’s

BSS is also a MIMO method, and an audio signal is separated
from Sin

i into two audio signals (Ssep1
i and Ssep2

i ) per channel.
Here, Ssep1

i and Ssep2
i are output in an arbitrary order; therefore,

the proposed system needs to make these signals swappable in the
classifier. The signals from Duong’s BSS are used for solving in only
the 1DCNN.

The proposed system uses HPSS [3] because it is reported to be
suitable for ASC. HPSS separates an audio signal Sin

i into a harmonic
audio signal Shar

i and percussive audio signal Sper
i . Non-negative

matrix factorization based HPSS [4] is used.
The proposed system implements simple beamforming (Simple

BF) only by addition and subtraction because Han and Park reported
that a similar method is suitable for ASC [7]. Simple BF only needs
a very short calculation time and calculates the output SBF =[
SBF
1 , SBF

2 , SBF
3 , SBF

4

]T
using x =

[
Sin
1 , Sin

2 , Sin
3 , Sin

4

]T :

SBF =


1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

x (1)

where, SBF
1 is the result of the simple summation, and SBF

2 , SBF
3 ,

and SBF
4 are the output of beams orthogonal to each other.

C. Classifier

As mentioned in Section IV-A, the proposed system uses a 1DCNN
and a 2DCNN (VGG16 [8]). Many pre-trained models [18] [19] are
available, so we compared their performances experimentally. We
confirmed that VGG16 has the most suitable performance for this
task. Almost all the classifiers have the same architecture. First, log
mel energy features and mel-frequency cepstral coefficient (MFCC)
features are extracted. The frame size is 40 ms, and the hop size is
50%. Next, these features are sent to the classifiers. MFCC features
are sent to a baseline network [9]. The log mel energy features are
sent to the 1DCNN-based baseline network, the pre-trained VGG16
connected with three dense layers (1024-128-32 units), the pre-trained
VGG16 connected with a support vector machine (SVM), and the
fine-tuned VGG16 connected with three dense layers. The numbers
of mel filters are set to 50 and 128 for the 1DCNNs and VGG16s,
respectively.

Because the VGG16 can receive only 3-channel color images from
the raw input signal, a signal consisting of the three copied channels
is input. On the other hand, for the VGG16 receiving a pair of
signals, the signals are converted into a 3-channel combination, e.g.,
the signals from Togami’s BD and the HPSS are converted into (Sd

i ,
Sd
i , Sr

i ) and (Shar
i , Shar

i , Sper
i ), respectively. In addition, for the

VGG16s receiving the simple-beamformed signal, the three channels
consist of (SBF

1 , SBF
2 , SBF

3 ).

D. Model ensemble

There are four versions of the proposed system for model ensem-
ble: probability averaging, random forest classifier, SVM classifier,
and “F1 score-weighted probability averaging.” Both the random
forest and SVM classifiers are trained by the pairs of the predicted
probabilities from all the classifiers and the supervision labels. In
“F1 score-weighted probability averaging,” the probabilities of each
classifier are weighted by the square of the worst class-wise F1 score
for the classifier, and the final scores are calculated by averaging
the weighted probabilities over all the classifiers. The 89 output
probabilities from all the classifiers are combined.

In Section V, we compare the F1 scores of the four versions and
verify the effect of the proposed system.

V. EXPERIMENT

We verified the effective of the proposed system on ASC per-
formance using the DCASE 2018 Task 5 dataset. In this section, we
first describe the effectiveness of pre-processing and classifiers on the
training dataset and then describe the performance of the proposed
system.

A. Effectiveness of pre-processing and classifier

In this section, we evaluate the effect of pre-processing and
classifiers in the proposed system.

For the evaluation, we compared the performances when each
pre-processing function and classifier was removed. The reason for
this is that evaluating the overall performance using only one pre-
processing function or classifier will only indicate its comparative
superiority and is insufficient for evaluating its contribution to in-
creasing performance. For example, when a classifier is removed and
the performance then degrades, it means the classifier contributes
to increasing performance. In addition, when a function is removed
and the performance does not change, it means that the function

TABLE I
F1 SCORES FOR THE DCASE 2018 DATASET. “ALL OUTPUT” REFERS TO

THE RESULT OF MODEL ENSEMBLE USING ALL OUTPUT PROBABILITIES OF
THE CLASSIFIERS. THE SECOND SECTION REFERS TO THE F1 SCORES
WHEN EACH PRE-PROCESS IS REMOVED OR USED ONLY. THE THIRD

SECTION REFERS TO THE F1 SCORES WHEN EACH CLASSIFIER IS
REMOVED OR USED ONLY. EACH METHOD IS EVALUATED USING THE

TRAINING DATA (TRAIN.) AND EVALUATION DATA (EVAL.).

Functions Remove each proc. Only each proc.

Pr
e-

pr
oc

es
s

All output train. 89.75
eval. 89.12

Input signal train. 89.78 88.46
eval. 88.84 88.48 (+0.02)

Togami’s BD train. 89.67 89.06
eval. 89.13 88.26 (-0.80)

Duong’s BSS train. 89.75 85.66
eval. 89.13 85.07 (-0.59)

HPSS train. 89.47 90.08
eval. 89.17 88.26 (-1.82)

Simple BF train. 89.67 88.85
eval. 88.93 88.27 (-0.58)

C
la

ss
ifi

er

VGG16 train. 89.36 89.11
+ fc-layer eval. 88.97 87.66 (-1.45)
VGG16 train. 89.05 87.51
+ SVM eval. 87.94 86.67 (-0.84)
1DCNN train. 89.15 87.23

eval. 88.24 86.30 (-0.93)
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TABLE II
F1 SCORES FOR DCASE 2018 DATASET. “BASELINE” GIVES THE RESULTS FOR DCASE 2018 BASELINE SYSTEM, “PROPOSED (MEAN PROB.)” FOR AN
ENSEMBLE USING MEAN OF PREDICTED PROBABILITY, “PROPOSED (RF)” FOR A RANDOM FOREST (RF) AS AN ENSEMBLE, “PROPOSED (SVM)” FOR A
SUPPORT VECTOR MACHINE (SVM) AS AN ENSEMBLE, AND “PROPOSED (F1-WEIGHED MEAN PROB.)” FOR AN ENSEMBLE USING WEIGHTED MEAN OF

PREDICTED PROBABILITY BASED ON F1 SCORE.

Class Baseline Proposed Proposed Proposed Proposed
(mean prob.) (F1-weighted mean prob.) (RF) (SVM)

dev. eval. dev. eval. dev. eval. dev. eval. dev. eval.
Absence 85.4 87.7 90.6 91.6 90.4 91.3 87.9 59.1 87.3 86.1
Cooking 95.1 93.0 96.2 97.0 96.3 97.0 96.5 96.1 96.5 95.8
Dishwashing 76.7 77.2 83.7 83.0 84.5 83.0 86.4 81.5 86.8 81.6
Eating 83.6 81.2 92.9 84.2 93.1 84.1 93.9 85.7 94.4 85.2
Other 44.7 35.0 60.2 57.7 61.0 58.3 62.2 53.7 64.7 54.6
Social activity 93.9 96.6 96.2 98.2 95.5 98.2 96.2 97.7 95.6 95.9
Vacuum cleaning 99.3 95.8 100.0 97.7 100.0 97.7 100.0 97.7 100.0 96.7
Watching TV 99.5 99.9 99.5 100.0 99.3 100.0 99.7 100.0 99.5 100.0
Working 82.0 81.4 88.0 86.1 88.0 85.8 87.3 68.6 87.2 81.3
Average 84.5 83.1 89.7 88.4 89.8 88.4 90.0 82.2 90.2 86.3

contributes to increasing the complement and the robustness but
not the numerical performance. Table I shows the performances of
the proposed system with each pre-processing or classifier removed
and the performances using only each pre-processing function or
classifier.

For pre-processing, in the upper section of Table I, the performance
when HPSS is removed (89.47%) is the most different from that
of “all output” (89.75%) and the performance of only HPSS is the
highest (90.08%) for the training dataset. However, the performance
when HPSS is removed (89.17%) is almost the same as that of “all
output” (89.12%) and the performance of only HPSS worsens (-
1.82%) for the evaluation dataset. This means that HPSS improves the
performance in the training [but is overfitting to the training dataset.
In addition, in the evaluation, the performance when Togami’s BD is
removed is 89.13%. The difference between training and evaluation
is smaller in the only-Togami’s BD case (-0.80%) than in the only-
HPSS case (-1.82%). This indicates Togami’s BD avoids overfitting
and makes an average contribution to improve the performance in
the proposed system. On the other hand, the performance when
Simple BF is removed is 88.93% and the performance of only Simple
BF slightly decreases (-0.58%) in the evaluation dataset. Therefore,
Simple BF avoids overfitting and contributes to improving the per-
formance in the proposed system. Additionally, the performance of
only “input signal” barely changes between training and evaluation
(+0.02%), and the performance with it is removed (88.84%) is less
than that of “all output” performance (89.75%). This means “input
signal” is not overfitting and contributes to improving the F1-score.
The performance when Duong’s BSS is removed does not differ
from that of “all output” performance (89.75%) even though the
performance of only Duong’s BSS is the lowest (85.07%). This is
because Duong’s BSS is used in only the 1DCNN, which has little
effect on classification.

For the classifiers, in the lower section of Table I, the performance
when VGG16 + SVM’s is removed (89.05%) is the most different
from that of “all output” (89.75%) for the training dataset. However,
the other classifiers also tend to have larger differences from “all
output” than the pre-processing functions do.

These results indicate that no one specific function improves the
performance dramatically, but all functions complement each other
through the model ensemble. Also, VGG16 is suitable for location-
independent multi-channel ASC even if it uses a pre-trained model
for image classification.

B. Performance of proposed system

To evaluate the location-independence, we evaluate the proposed
system with the dataset which the position of the microphone
array differs between the training and evaluation dataset. Table II
shows the experimental results of the four versions of our proposed
system and the DCASE 2018 baseline-system on the dataset.1 The
baseline-system is based on a 1DCNN and is a state-of-the-art ASC
system. For the training dataset, each proposed system outperforms
the “Baseline,” 84% F1 score and achieves an F1 score around
90%. All proposed systems achieved a 100% F1 score for “Vacuum
cleaning’’ in the evaluation. In addition, all proposed systems had
F1 scores over 7% higher than that of “Baseline,” in “Dishwashing,”
“Eating,” “Other,” and “Working,” with “Other” marking the largest
improvement with F1 scores over 15% higher. The “Other” class
is unique in that it consists of miscellaneous data. Data in “Other”
is more difficult to classify than methodical data in other classes
(“Vacuum cleaning,” “Cooking,” etc.). This improvement suggests
that the proposed system is robust to unknown data found in the
training dataset.

Results on the evaluation dataset suggest the effectiveness of the
proposed location-independent multi-channel ASC system because
the F1 scores for the training and evaluation datasets are only 1.5%
different on average in the cases of “mean prob.” and “F1-weighted
mean prob.” These results indicate that the proposed systems have a
high location-independence because the position of the microphone
array differs between the training and evaluation datasets. The pro-
posed system (88.4%) tied for first place in DCASE 2018 Task 5. This
challenge result indicates that the proposed system outperforms the
other state-of-the-art systems. The performances of “RF” and “SVM,”
however, were about 7.8% and 3.9% lower, respectively. The results
for “RF” indicate a large difference in performance between the
training and evaluation datasets. Specifically, the “RF” performances
for “Absence,” “Other,” and “Working” were by respectively about
20%, 10%, and 20% lower in the evaluation dataset than in the
training dataset. The results for “SVM” indicate that the performances
for “Other” and “Working” were also about 10% lower in the
evaluation dataset than in the training dataset.

1There is some differences between Tables I and II because the evaluation
method is different. Table I shows the results using all the evaluation dataset.
Table II shows the results using only the “location unknown microphone”
dataset, which is published by the task organizer. The authors asked the task
organizer about the property of the dataset recording and have not received a
reply at the time of writing.
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The results suggest that the machine learning-based ensemble (e.g.,
“RF” and “SVM”) overfitted to the dataset and the non-machine-
learning based ensemble avoided overfitting.

VI. CONCLUSION

We presented a location-independent multi-channel acoustic scene
classification (ASC) system that avoids spatial overfitting generally
caused by learning from spatial information enclosed in dataset. The
proposed ASC system uses blind dereverberation, blind sound source
separation, pre-trained model-based classifiers, and a model ensem-
ble. Experimental results on the DCASE 2018 Task 5 dataset indicate
that the proposed system, with an F1 score of 88.4%, outperforms a
baseline system. From the experimental results, location-independent
multi-channel ASC based on non-machine-learning ensemble is effec-
tive for robust ASC. In addition, results indicated that no one specific
function improves the performance dramatically, but all functions
complement each other through the model ensemble.
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