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Abstract— Speech enhancement is a vital technology for 
reducing the noise in speech communication. Most speech 
enhancement methods only estimate magnitude spectrum of 
clean speech from noisy speech and combine noisy phase 
spectrum to recover the enhanced speech. In this paper, 
considering the importance of recovering the phase of clean 
speech in speech enhancement, a phase recovery method of 
speech is proposed by combining phase unwrapping and deep 
neural network (DNN). By integrating the recovered phase of 
clean speech into conventional magnitude enhancement methods, 
the performance is improved effectively. The verification is 
conducted by several types of noises at different signal-to-noise 
ratio (SNR) levels. The experimental results also confirmed that 
the recovered phase of clean speech resulted in an obvious 
improvement on the speech quality and intelligibility compared 
to the noisy phase. 

I. INTRODUCTION 

In speech signal processing, speech enhancement is mainly 
used to remove various noises in speech communication. 
With the development of digital signal processing technology, 
many classic speech enhancement methods have emerged for 
decades. For example, spectral subtraction method [1], 
Wiener filtering method [2], subspace method [3], statistical 
model-based method [4] and so on. These methods are classic 
methods in the field of speech enhancement because of their 
simple principle and easier implementation. However, these 
methods are based on a certain degree of ideal hypothesis, 
such as using the phase of noisy speech as the enhanced 
speech phase in speech reconstruction. So, they all ignore the 
importance of phase information [5, 6] in speech signal. In 
this way, the error of noisy phase to clean phase can be 
ignored when the SNR level is high. However, if the SNR is 
at a relatively low level, the phase error will cause a certain 
amount of negative impact for the enhanced speech. 

In recent years, the researchers have paid more attention to 
the phase estimation of speech in speech enhancement, such 
as phase-locked loop-based phase estimation [7], harmonic 
enhancement-based phase reconstruction [8] and so on. Some 
results have shown that effective phase recovery of speech 
could considerably improve speech quality [9]. With the 
development of deep learning, the DNN have been 
extensively applied into speech enhancement. Some people 
have tried to combine DNN with traditional methods to 
reconstruct the phase of speech in speech enhancement 
system. For example, Magron proposed a phase constraint 

method based on sinusoidal-model and neural network for 
speech separation [10], Wang proposed a neural network and 
unfolded iterative-based phase reconstruction method [11]. 
These methods were proved that the importance of phase 
information in speech enhancement. In addition, some 
scholars have proposed to use DNN to estimate the phase 
indirectly. For example, Wang proposed a DNN-based 
complex ideal ratio masking (cIRM) method [12]. In this 
method, the magnitude and phase of speech were converted 
into a complex form and the real and imaginary parts of the 
short-time Fourier transform (STFT) of noisy speech were 
used as targets of the DNN. Another DNN-based example for 
indirect estimation of phase is to treat phase estimation 
problem as a classification problem by discretizing phase 
values and assigning class indexes [13]. Thus, it can be seen 
that phase recovery of speech may be a breakthrough of 
speech enhancement, that is, the phase estimation is 
indispensable for speech enhancement. 

In this paper, a speech enhancement method is proposed 
through phase unwrapping based on Cellular-Automata 
principle. In this method, noisy speech phase is first 
unwrapped so that the phase value is not limited to the 
interval from - to . Secondly, the DNN is used to estimate 
phase from the unwrapped noisy phase for getting the 
corresponding speech phase, and this speech phase is re-
wrapped between - and . Finally, combined with the 
enhanced magnitude spectrum, the speech signal is obtained 
by combing the recovered speech phase. 

The rest of this paper is organized as follows. In Section 2, 
the classic magnitude enhancement methods are described. In 
Section 3, the details of the proposed phase recovery method 
are discussed. Experiments and results are provided in Section 
4, and the conclusions are given in Section 5. 

II. REVIEW OF MAGNITUDE ENHANCEMENT 

In the most speech enhancement methods including 
unsupervised and supervised methods, the short-term 
magnitude spectrum of speech is considered, whereas the 
equally important short-term phase spectrum is ignored. 
Whether it is the unsupervised Wiener filtering-based speech 
enhancement method [14] or the supervised ideal ratio mask 
(IRM)-based speech enhancement method [15], the following 
transfer function is adopted to reduce or mask noise, 
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where t is the frame index and k is the frequency bin. |S(t, k)|2 
and |N(t, k)|2 are the estimated power spectra of speech and 
noise at the (t, k)th time-frequency (T-F) bin, respectively.  

In the unsupervised method, the H(t, k) is used as a gain 
function to obtain magnitude spectrum of the enhanced 
speech, while in the supervised method, the H(t, k) is used as 
the training target of neural network to obtain an IRM for 
masking the noise. By combining with noisy speech phase of 
each frequency bin, the enhanced speech can be obtained by 
doing an inverse STFT. In order to improve the performance 
of the unsupervised and supervised methods, in this paper, the 
estimated phase of speech is embedded into enhanced 
magnitude spectrum. The details are given in the next section. 

III. PROPOSED PHASE RECOVERY METHOD 

A. Cellular-Automata-Based Phase Unwrapping 
Generally, the STFT of speech signal makes the values of 

phase spectrum wrapped between - and  [6]. Due to the 
existence of the wrapping phenomenon, the phase spectrum 
does not have specific structure as the magnitude spectrum 
again, so it cannot be directly estimated by the neural network. 
Thus, we have to finish a phase unwrapping to overcome this 
restriction. The cellular automata gives us an enlightenment. 
Cellular automata is a simply and discretely mathematical 
system that can exhibit complex behavior resulting from 
collective effects of a large number of cells, each of which 
evolves in discrete time steps according to rather simple local 
neighborhood rules [16]. So, we can combine this principle 
with two-dimensional phase spectrum of speech signal, that is, 
the phase unwrapping can be implemented by following a 
correction to remove restriction from - to . In this paper, a 
method based on “Strength-of-Vote” [17] with local 
neighborhood correction is adopted for the phase unwrapping, 
its details can be obtained by Algorithm 1. Given a frame of 
phase spectrum containing a finite number of frequency bins, 
each frequency bin represents a principal value of phase 
information between - and . All frequency bins, derived 
from T-F transformation (e.g. discrete Fourier transform), in a 
frame, are updated simultaneously according to the phase 
difference with adjacent frequency bins to obtain the 
unwrapped phase by Algorithm 1. 

Through the iteration Algorithm 1 of cellular-automata-
based phase unwrapping, the constrained phase values are 
expanded into ones that do not have a limitation from - to   
according to the “Strength-of-Vote” rule. The phase spectrum 
gets into a specific structure that is suitable for the learning of 
neural network. The more the iteration number, the larger the 
dynamic range of unwrapped phase after expansion. For the 
feasibility of neural network training and the consideration of 
computational complexity, we set the number of local 
iteration and global iteration to 20 and 20, respectively. 
Therefore, obtaining the unwrapped phase information with 

specific structure and its range of the values is unlimited and 
deterministic, which are beneficial for neural network. 

B. DNN-Based Unwrapped Phase Estimation 
Since the unwrapped phase spectrum has the specific 

structure, the DNN can be used for estimating the unwrapped 
speech phase. In the training stage of the DNN, the 
unwrapped noisy phase Yu(t, k) is used as input feature, and 
the ratio mask of the unwrapped phase, IRMphase(t, k), is 
employed as the training target for more accurate estimation. 
The training target IRMphase(t, k) is defined as follows: 
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where Su(t, k) is the unwrapped phase of clean speech. The 
Mean Squared Error (MSE) is chosen as the objective 
function. 

Algorithm 1: Cellular-Automata-Based Phase Unwrapping 

Input: a frame of true phase vector,  = [1,0(t, 0), , 1,0(t, N-1)] 
Output: a frame of unwrapped phase vector, u = [m,n(t, 0), , m,n(t, N-
1)] 

m: global iteration number       n: local iteration number 
N: the number of frequency bins  
i,j(t, k): the phase value at the (t, k)th T-F bin of the ith global iteration 

and the jth local iteration 
1,0(t, k): the initial value of true phase at the (t, k)th T-F bin 
# Subfunction: frequency bin-based iteration 
BinUpdate(1,0(t, k)): 

# Global iteration 
for i=1 to m 

# Local iteration 
for j=1 to n 

# Phase differences with adjacent frequency bins left(t, k) and  
right(t, k), 

left(t, k)=i,j-1(t, k)- i,j-1(t, k-1)         # if k=0, left(t, k)=0 
 

right(t, k)= i,j-1(t, k)- i,j-1(t, k+1)    # if k=N-1,  
right(t, k)=0 

# Strength-of-Vote with adjacent frequency bins Nleft (t, k) and Nright(t, k) 
* 

left(t, k)=left(t, k)+2Nleft(t, k)  
* 

right(t, k)=left(t, k)+2Nright(t, k) 
let * 

left(t, k)[-, ], get Nleft(t, k) 
let * 

right(t, k)[-, ], get Nright(t, k) 
# Update the value at the (t, k)th T-F bin 
if Nleft(t, k)=0 && Nright(t, k)=0 
i,j(t, k)= i,j-1(t, k) 

if Nleft(t, k)+Nright(t, k)0 && (Nleft(t, k)0 || Nright(t, k)0) 
i,j(t, k)= i,j-1(t, k)+2 

if Nleft(t, k)+Nright(t, k)0 
i,j(t, k)= i,j-1(t, k)-2 

end 
# Find average value of two results from the last two local iterations 
i,n(t, k)=[i,n-1(t, k)+i,n(t, k)]/2 

# Preparing for the next global iteration 
i+1,0(t, k)=i,n(t, k) 

end 
# Return the global iteration result 
return m,n(t, k) 

# Main function: frame-based iteration  
FrameUpdate(): 
     do BinUpdate() on each frequency bin k consisting of vector  

simultaneously to get u 
     return u 
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In the enhancement stage, the unwrapped phase of noisy 
speech is fed into the trained DNN, named as the UPDNN 
because it is used to estimate the unwrapped phase (UP), to 
obtain the IRMphase(t, k). By combing with the input feature 
Yu(t, k), the estimated unwrapped phase  * 

Su(t, k) of clean 
speech is given by 

 * ( , )( , )
( , )


  Yu

Su
phaseIRM

t k
t k

t k
  (3) 

C. Phase Reconstruction 
The range of the unwrapped clean phase value estimated by 

the UPDNN is still unrestricted. But for speech reconstruction, 
we need to re-wrap the phase to the range of [-, ]. 
According to Itoh's analysis of phase wrapping [18], the phase 
principal values can be regarded as the results of applying a 
wrapping operator W on the estimated unwrapped phase, i.e., 
the estimated re-wrapped phase * 

S (t, k) of the clean speech is 
expressed as follows: 

 * * *W[ ] 2 ( , )( , ) ( , ) ( , )    S Su Su l t kt k t k t k   (4) 

where l(t, k) is an integer matrix that makes * 
S (t, k) meet the 

following condition: 

 * ( , )     S t k   (5) 

Based on Eq. (3)-(5), the speech phase used for speech 
enhancement is recovered by re-wrapping the estimated 
unwrapped phase of speech. 

D. Speech Enhancement Based on Phase Recovery 
The block diagram of the proposed method is shown in 

Figure 1. In the training stage, the unwrapped phase of noisy 
speech is normalized, and the relationship between this 
normalized unwrapped phase and IRMphase(t, k) is mapped to 
train the UPDNN. In enhancement stage, the phase of noisy 
phase is extracted to get the unwrapped phase. The 
unwrapped phase is normalized and inputted to the UPDNN. 
Combining the output of the UPDNN with the unwrapped 
noisy phase, the phase reconstruction of speech is performed 
for speech enhancement. 

By combining the recovered phase with the enhanced 
magnitude spectrum obtained by Wiener filtering-based 
method [14] and IRM-based method [15], the enhanced 
speech is obtained by performing an inverse STFT 

IV. EXPERIMENTAL SETUP AND EVALUATION METRICS 

A. Experimental Setup 
In the experiments, the TIMIT [19] corpus is used to 

evaluate performance of the proposed method. 4620 sentences 
from different speakers in the TIMIT corpus are used as the 
clean speech. 102 noise types including 100 environmental 

noises [20], Babble and F16 noise [21] are used as the 
training set of noise. Speech signal is down-sampled to 8 kHz. 
Moreover, the speech and noise are artificially mixed to 
obtain noisy speech at four different SNR levels from -5 to 
10dB spaced by 5dB. 9216 noisy speech sentences are 
selected randomly to build an 8-hour training set. 

In enhancement stage, another 201 sentences from the 
TIMIT test set are chosen randomly as clean speech. Babble 
and F16 noises in the training set and other two noises 
Factory and White [21] outside the training set are combined 
with clean speech to get noisy speech for the test. The noisy 
speech is formed at three different SNR levels ranging from -
5 to 5dB in terms of 5dB step. Additionally, the length of each 
sentence in the test set is about 10 minutes. 

For the training of neural network, 129-dimensional 
normalized speech magnitude spectrum is used as input 
features for the IRM-based supervised method to enhance 
magnitude spectrum, and the normalized unwrapped phase 
signal from the 129-dimensional phase spectrum is used as 
input features for the UPDNN to enhance the unwrapped 
phase, which are extracted using a window length of 32ms 
(256 samples) and a frame shift of 16ms (128 samples). The 
structure of the proposed UPDNN is composed of three 
hidden layers and each layer contains 512 neurons with 
rectified linear unit (ReLU) [22] as activation function. The 
Adaptive Moment Estimation (Adam) algorithm [23] is 
chosen to update the parameters of the neural network. For 
the training target IRMphase(t, k), as indicated in Eq. (2), since 
the numerator and denominator components of IRMphase(t, k) 
are obtained by the same unwrapping rule and their ranges are 
similar, the ratio is in a very small range of values and can be 
used as training target of neural networks without 
normalization. 

B. Evaluation Metrics 
The performance of the enhanced speech is evaluated by 

perceptual evaluation of speech quality (PESQ) [24], short-
time objective intelligibility (STOI) [25] and phase error (PE). 
The PESQ is used to measure subjective quality of speech, 
while STOI is utilized to test intelligibility of speech. The PE 

Noisy Phase Unwrapped Phase

Input Layer Hidden Layers Estimated
PhaseIRM 

PhaseIRM

UPDNN

Training 
Stage

Noisy Speech

Noisy Phase

Noisy Magnitude

Unwrapped Phase UPDNN PhaseIRM

Clean Speech Inverse STFT

Enhanced 
Magnitude

Enhanced
Unwrapped Phase

Enhanced
Wrapped PhaseEnhancement 

Stage

 
Figure 1:  Block diagram of the proposed speech enhancement method. 
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reflects the error between the recovered phase and clean phase. 
The PE is defined by 

 *

1 1

1
( , ) ( , ) 

 

 
M N

S S
t k

PE t k t k
MN
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where M and N are the numbers of frames and frequency bins, 
respectively. S(t, k) and * 

S (t, k) denote phase spectra of clean 
speech and the recovered speech at the (t, k)th T-F bin. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Feasibility of Phase Unwrapping 
For phase recovery based on phase unwrapping, the loss of 

phase information must be within a sufficiently small error. 
So, we need to verify whether the proposed phase unwrapping 
and phase reconstruction can be a transform pair. 

Figure 2 depicts an example of a random frame of clean 
speech phase in the TIMIT corpus, it includes the true clean 
phase, the unwrapped clean phase and the reconstructed clean 
phase directly obtained from the unwrapped clean phase 
without DNN estimation process. It can be clearly seen from 
Figure 2 (a) and Figure 2 (c) that the reconstructed phase is 
almost the same as true one. Table 1 shows the results of 
speech quality and intelligibility of clean speech with true 
clean phase and reconstructed clean phase directly obtained 
from the unwrapping without DNN estimation. This implies 
that the speech obtained by the reconstructed clean phase is 
nearly same as clean speech within a very small error range. 
Therefore, the transform pair is valid within a tolerant error 
and can be used for phase transformation and estimation. 

B. Speech Quality and Intelligibility 
Table 2 presents the average PESQ and STOI results of the 

Wiener filtering-based method (referred to WF) [14] and the 
IRM-based supervised method (referred to IRMDNN) [15] 
with noisy phase (NP) and the proposed phase (UP) at three 
different SNR levels (-5dB, 0dB, 5dB). In four noises (Babble, 
F16, Factory and White) tests, the Babble and F16 are the 
trained noises, while the Factory and White are the unseen 
noises. 

From the PESQ results, it is clear that although the Wiener 
filtering-based method and IRMDNN-based method achieved 
great improvement comparing with noisy speech, the scores 
of the proposed method is still superior to the reference 
method. The increase in PESQ scores of the proposed method 
is due to effective estimation of phase compared with Wiener 
filtering-based method and the IRM-based supervised method. 
They help the enhanced speech to have more accurate phase 
information for the reconstruction of speech, especially in the 
case of low SNR level. Because, in this case, employing the 
phase of noisy speech will lead to greater errors. 

From the STOI results, we can find that the Wiener 
filtering-based speech enhancement method does not have an 
obvious improvement, even the intelligibility is reduced 
compared with noisy speech. This is due to Wiener filtering 

method can introduce speech distortion and music noise. By 
combing the recovered phase, even so, there still have a 
certain degree of improvement. For the IRM-based supervised 
method, the proposed method has considerable improvement 
in intelligibility compared to noisy phase, especially in the 
case of low SNR. This indicates that the recovered phase 
contributes higher intelligibility to speech than the noisy 
phase at lower SNR levels. 

C. Phase Error 
Based on the definition of phase error Eq. (6) in this work, 

the results of error analysis on the test set are given in Figure 
3. In Figure 3, the blue dashed line shows the average phase 
error results with noisy phase and the black solid line shows 
the average phase error results with the recovered phase. We 
can see that combing noisy phase into magnitude spectrum 
results in the large errors due to the overwhelming of speech 
by noise. However, the proposed phase recovery method 
reduces phase error so that the more accurate phase is 
obtained for speech reconstruction, especially in the case of 
lower SNR level, where the noisy phase has large error. 
Therefore, compared with the noisy phase, the proposed phase 
recovery method can effectively reduce the error of clean 
speech phase. 

(a) The true speech phase 
 

(b) The unwrapped speech phase 
 

(c) The reconstructed speech phase 
 

Figure 2:  A frame of clean speech phase. (a) The true speech phase; (b) 
The unwrapped speech phase; (c) The reconstructed speech phase 
directly obtained from the unwrapped clean phase without DNN 

estimation process. 
 
 

Table 1: The PESQ and STOI results of clean speech with true speech 
phase and the reconstucted speech phase directly obtained from 

unwrapping without DNN estimation process. 
 

Speech PESQ STOI 
CleanMagnitude+CleanPhase 4.5 1 

CleanMagnitude+ReconstuctedPhase 4.45843 0.99998 
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From the above quality and intelligibility score and error 
analysis, we can see that the proposed phase recovery method 
can be combined with the existing unsupervised and 
supervised magnitude-based speech enhancement methods to 
further reduce the error caused by the use of noisy speech 
phase and improve the enhanced speech quality and 
intelligibility. 

VI. CONCLUSIONS 

In this paper, a new method for speech phase recovery was 
proposed based on the cellular-automata and deep neural 
network. The cellular-automata-based method was used to 
obtain the unwrapped phase without limitation from - to , 
in which the DNN was used to estimate the unwrapped phase. 
The enhanced phase was reconstructed by re-wrapped the 
estimated unwrapped phase, and combined with magnitude 
enhancement methods to reconstruct speech. In comparison 
with conventional speech enhancement methods that used 
noisy phase as the enhanced phase, the proposed method can 
significantly improve the enhanced speech quality and 
intelligibility. In the future, we will further improve the 
method of phase estimation and combine it with other neural 
network with stronger fitting ability to further improve the 
accuracy of phase estimation, so as to obtain better quality 
and better intelligibility speech. 

ACKNOWLEDGMENT 

This work was supported by National Natural Science 
Foundation of China (Grant No. 61831019, No. 
61471014 and No. 61231015). 

REFERENCES 
[1] S. Boll, "Suppression of acoustic noise in speech using spectral 

subtraction," IEEE/ACM Transactions on Acoustics, Speech, 
and Signal Processing, vol. 27, no. 2, pp. 113-120, Apr 1979. 

[2] J. S. Lim and A. V. Oppenheim, "Enhancement and bandwidth 
compression of noisy speech," Proceedings of the IEEE, vol. 67, 
no. 12, pp. 1586-1604, Dec. 1979. 

[3] F. Asano, S. Hayamizu, T. Yamada and S. Nakamura, "Speech 
enhancement based on the subspace method," IEEE/ACM 
Transactions on Speech and Audio Processing, vol. 8, no. 5, pp. 
497-507, Sep 2000. 

[4] Y. Ephraim and D. Malah, "Speech enhancement using a 
minimum-mean square error short-time spectral magnitude 
estimator," IEEE/ACM Transactions on Acoustics, Speech, and 
Signal Processing, vol. 32, no. 6, pp. 1109-1121, Dec 1984. 

[5] P. Mowlaee, R. Saeidi, and Y. Stylianou, “INTERSPEECH 
2014 Special Session: Phase Importance in Speech Processing 
Applications”, Proc. Interspeech, pp. 1623-1627, 2014. 

[6] T. Gerkmann, M. Krawczyk-Becker and J. Le Roux, "Phase 
Processing for Single-Channel Speech Enhancement: History 
and recent advances," IEEE Signal Processing Magazine, vol. 
32, no. 2, pp. 55-66, March 2015. 

[7] P. Pallavi and R. Rao, “Phase-Locked Loop (PLL) Based Phase 
Estimation in Single Channel Speech Enhancement”, Proc. 
Interspeech, pp. 1161-1164, 2018. 

[8] Y. Wakabayashi, T. Fukumori, M. Nakayama, T. Nishiura and 
Y. Yamashita, "Single-Channel Speech Enhancement With 
Phase Reconstruction Based on Phase Distortion Averaging," 
IEEE/ACM Transactions on Audio, Speech, and Language 
Processing, vol. 26, no. 9, pp. 1559-1569, Sept. 2018. 

[9] PALIWAL K, WÓJCICKI K, SHANNON B. “The Importance 
of Phase in Speech Enhancement”. Speech Communication, 
vol.53, no. 4, pp.465-494, 2011. 

[10] P. Magron, K. Drossos, S. I. Mimilakis, and T. Virtanen, 
“Reducing Interference with Phase Recovery in DNN-based 
Monaural Singing Voice Separation”, Proc. Interspeech, pp. 
332-336, 2018. 

[11] Z. Wang, J. L. Roux, D. Wang and J. R. Hershey, “End-to-End 
Speech Separation with Unfolded Iterative Phase 
Reconstruction”, Proc. Interspeech, pp. 2708-2712, 2018. 

[12] D. S. Williamson, Y. Wang and D. Wang, "Complex Ratio 
Masking for Monaural Speech Separation," IEEE/ACM 
Transactions on Audio, Speech, and Language Processing, vol. 
24, no. 3, pp. 483-492, March 2016. 

[13] N. Takahashi, P. Agrawal, N. Goswami and Y. Mitsufuji, 
“PhaseNet: Discretized Phase Modeling with Deep Neural 
Networks for Audio Source Separation”, Proc. Interspeech, pp. 
2713-2717, 2018. 

[14] Y. Ephraim and D. Malah, "Speech enhancement using a 
minimum-mean square error short-time spectral amplitude 

Table 2: Comparison of the average PESQ and STOI results. 
 

Metrics PESQ STOI 
SNR (dB) -5 0 5 -5 0 5 

Methods 

Noisy Speech 1.5751 1.8441 2.1376 0.5112 0.6329 0.7484 
WF+NP 1.6449 2.0335 2.4534 0.4776 0.6194 0.7450 
WF+UP 1.7132 2.0994 2.4958 0.4866 0.6259 0.7471 

IRMDNN+NP 1.8069 2.2313 2.6207 0.5761 0.7104 0.8075 
IRMDNN+UP 1.8986 2.2925 2.6442 0.5823 0.7130 0.8098 

 

 
 

Figure 3: The average PE results of noisy and the recovered phases. 
 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

888



estimator," IEEE Transactions on Acoustics, Speech, and Signal 
Processing, vol. 32, no. 6, pp. 1109-1121, December 1984. 

[15] D. Wang and J. Chen, "Supervised Speech Separation Based on 
Deep Learning: An Overview," IEEE/ACM Transactions on 
Audio, Speech, and Language Processing, vol. 26, no. 10, pp. 
1702-1726, Oct. 2018. 

[16] D. C. Ghiglia, G. A. Mastin, and L. A. Romero, "Cellular-
automata method for phase unwrapping," J. Opt. Soc. Am. A, 
vol. 4, no. 1, pp. 267-280, 1987. 

[17] S. Wolfram, “Cellular Automata”, Los Alamos Science, vol. 9, 
pp. 2-21, 1983. 

[18] K. Itoh, "Analysis of the phase unwrapping algorithm," Appl. 
Opt, vol. 21, no. 4, pp. 2470-2470, 1982. 

[19] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. 
Pallett, “DARPA TIMIT acoustic-phonetic continous speech 
corpus CD-ROM. NIST speech disc 1-1.1,” NASA STI/Recon 
Technical Report N, vol. 93, 1993. 

[20] G.H, “100 nonspeech environmental sounds,” 2014. 
[21] A. Varga, and H. J. Steeneken, “Assessment for automatic 

speech recognition: II. NOISEX-92: A database and an 
experiment to study the effect of additive noise on speech 
recognition systems,” Speech communication, vol. 12, no. 3, pp. 
247-251, 1993. 

[22] K. He, X. Zhang, S. Ren and J. Sun, "Delving Deep into 
Rectifiers: Surpassing Human-Level Performance on ImageNet 
Classification," 2015 IEEE International Conference on 
Computer Vision (ICCV), Santiago, pp. 1026-1034, 2015. 

[23] D. Kingma and J. Ba, "Adam: A Method for Stochastic 
Optimization," arXiv preprint arXiv:1412.6980, 2014. 

[24] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, 
“Perceptual evaluation of speech quality (PESQ)-a new method 
for speech quality assessment of telephone networks and 
codecs,” 2001 IEEE International Conference on Acoustics, 
Speech, and Signal Processing (ICASSP), Salt Lake City, UT, 
USA, pp. 749-752, 2001. 

[25] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An 
algorithm for intelligibility prediction of time–frequency 
weighted noisy speech,” IEEE/ACM Transactions on Audio, 
Speech, and Language Processing, vol. 19, no. 7, pp. 2125-
2136, 2011. 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

889




