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Abstract—Voice activity detection (VAD) is considered as a
solved problem in noise-free condition, but it is still a challenging
task in low signal-to-noise ratio (SNR) noisy conditions.
Intuitively, reducing noise will improve the VAD. Therefore, in
this study, we introduce a speech enhancement module to reduce
noise. Specifically, a convolutional recurrent neural network
(CRN) based encoder-decoder speech enhancement module is
trained to reduce noise. Then the low-dimensional features code
from its encoder together with the raw spectrum of noisy speech
are feed into a deep residual convolutional neural network
(ResCNN) based VAD module. The speech enhancement and
VAD modules are connected and trained jointly. To balance
the training speed of the two modules, an empirical dynamic
gradient balance strategy is proposed. Experimental results
show that the proposed joint-training method has obvious
advantages in generalization ability.

I. INTRODUCTION

Voice activity detection (VAD) is widely used in many
applications, such as speaker recognition, voice wake-up and
automatic speech recognition (ASR). The task of VAD is to
identify speech or non-speech events in a given audio signal.

At present, VAD is usually treated as a binary-classification
problem with pre-marked labels on each frame. The state-
of-the-art algorithms are usually based on deep learning
architectures, e.g. fully connected deep neural networks
(DNNs) [1], [2], convolutional neural networks (CNNs)
[3], [4], long short-term memory (LSTM) recurrent neural
networks [5]–[7]. Deep learning based methods demonstrated
excellent performance in trained noisy conditions. While their
performance will drop down in untrained noisy conditions.
Improving the performance both in the trained and untrained
conditions is improving the discriminative ability and
generalization ability, which is an important issue in the
supervised learning.

Despite the ongoing development over the years, VAD is
still a challenging task in low signal-to-noise ratio (SNR),
especially under unmatched noisy conditions. To cope with
this challenge, a speech enhancement module is involved. In
[8], a multi-targets learning framework is employed, where
VAD is jointly trained with a speech enhancement task by hard
sharing of underlying parameters to achieve robustness under
noisy conditions. A more intuitively method is using a speech
enhancement module to reduce noise and get “clean features”,

then utilize the VAD module to discriminate speech or non-
speech events based on the clean features. Training these
two modules jointly has shown excellent improvement [9].
The potential of speech enhancement module is investigated
further in [10], where the input features of VAD is not only
the clean features but also the intermediate representation
from the denoising variational autoencoders (DVAE) based
speech enhancement module. However, the performance of
these approaches are highly dependent on the performance
of the speech enhancement part, which is more difficult than
VAD obviously.

In fact, the target of speech enhancement and VAD are
somewhat consistent. VAD aims to detect when speech appears
in time dimension, and speech enhancement aims to separate
the target speech from background in both of time and
frequency dimensions. Since the speech enhancement requires
higher precision, many speech processing systems employ
VAD as a pre-processing step of speech enhancement. It
is more difficult to perform speech enhancement excellent
in low SNR under untrained noisy conditions. Applying
speech enhancement to get “clean features” and improve the
performance of VAD is fails when the speech enhancement
module is poor.

With these observations, the clean features are abandoned.
In consideration of VAD as a pre-processing step of speech
enhancement, we speculate that the underlying features of
the speech enhancement model may hide useful and valid
information for VAD. So an encoder-decoder architecture is
employed, which is suitable for underlying features extraction.
Specifically, we use a convolutional recurrent neural network
(CRN) for speech enhancement, which is encoder-decoder
and is effective for speech enhancement tasks [11]. In the
proposed method the underlying features from the encoder is
concatenated to the feature of noisy speech then feed into a
deep residual convolutional neural network (ResCNN) based
VAD module. The speech enhancement and VAD modules
are connected and trained jointly with an empirical dynamic
gradient balance strategy to balance the training speed of the
two modules. Experimental results show that the proposed
approach outperforms the conventional methods, and helpful to
address the issue of performance degradation due to untrained
noise.
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The rest of this paper is constructed as follows. Section 2
reviews the speech enhancement and VAD then introduces
our joint training approach and describes the proposed
architecture. Then the experimental details and results are
described in section 3. Finally, section 4 concludes the paper.

II. JOINT TRAINING VAD

A. Speech Enhancement

Speech enhancement aims to separate target speech from the
background interference. Recently, speech enhancement has
been formulated as a supervised learning, which employs deep
neural network to map from noisy speech to target speech.
The commonly used acoustic feature is magnitude spectrum.
The input is the magnitude spectrum of noisy speech, and the
output is the magnitude spectrum of clean speech [12]–[14].
The mean squared error (MSE) is usually used as the loss
function:

Lss =
1

N

N∑
t=1

 M∑
f=1

∥∥∥Y(t,f) − Ŷ(t,f)∥∥∥2
 (1)

where N is the number of frames, M is the number of
frequency bins. Yt,f and Ŷt,f represent the feature of clean
speech and the estimated speech in the (t, f) time-frequency
unit, respectively.

Good speech enhancement can remove the interference
noise and then improve VAD. But when the performance of
speech enhancement module is poor, especially in low SNR
under untrained noisy conditions, it may harm rather than help
the VAD. Instead of using the enhancement results which may
include much errors, we back to the middle way of the whole
speech enhancement processing, which may partly solve the
speech enhancement task but does not involve many errors
specific to the speech enhancement.

Specifically, we use a CRN [11] to address the speech
enhancement. The CRN is an encoder-decoder structure which
is shown in the higher part of Fig. 1. A series of convolutional
layer is located in the bottom layer of CRN, which can
reduce spectral variations effectively. In the intermediate layer,
long short-term memory (LSTM) can model the sequential
information of the speech signal, which is a conventional
choice for both VAD and speech enhancement [15], [16].
After that, a series of deconvolutional layer is employed and
made the whole network optimized as an encoder-decoder
structure by using noisy-clean speech pairs. More over, the
skip layer connection is applied to connect each encoder layer
to the corresponding decoder layer, which can improve the
flow of gradients when the network is deep and promote the
intermediate LSTM layer to be more robust.

B. Voice Activity Detection

VAD aims to detect the speech or non-speech events in an
audio signal, which is pretty simple for clean speech. However,
for noisy speech, especially in low SNR scenario, VAD is a
challenge. To cope with the challenge, in recent years, most
researches focused on deep learning methods, which treat VAD

TABLE I
ARCHITECTURE OF THE PROPOSED JOINT TRAINING METHOD. HERE T

DENOTES THE NUMBER OF TIME FRAMES IN THE MAGNITUDE SPECTRUM.

Component Layer Hyperparameters Output Size

Speech
Enhancement

Reshape 1 - T × 161 × 1

Conv2d 1 1 × 3, (1, 2), 8 T × 80 × 8

Conv2d 2 1 × 3, (1, 2), 8 T × 39 × 8

Conv2d 3 1 × 3, (1, 2), 8 T × 19 × 8

Conv2d 4 1 × 3, (1, 2), 16 T × 9 × 16

Conv2d 5 1 × 3, (1, 2), 16 T × 4 × 16

Reshape 2 - T × 64

Lstm 1 64 T × 64

Lstm 2 64 T × 64

Deconv2d 1 1 × 3, (1, 2), 16 T × 9 × 16

Deconv2d 2 1 × 3, (1, 2), 8 T × 19 × 8

Deconv2d 3 1 × 3, (1, 2), 8 T × 39 × 8

Deconv2d 4 1 × 3, (1, 2), 8 T × 80 × 8

Deconv2d 5 1 × 3, (1, 2), 1 T × 161 × 1

Voice
Activity

Detection

Reshape 1 - T × 225 × 1

Conv2d 1 5 × 5, (1 × 2), 16 T × 113 × 16

Res 1
[3 × 3, 16]

[3 × 3, 16]
T × 113 × 16

Conv2d 2 5 × 5, (1 × 2), 32 T × 57 × 32

Res 2
[3 × 3, 32]

[3 × 3, 32]
T × 57 × 32

Conv2d 3 5 × 5, (1 × 2), 32 T × 29 × 32

Res 3
[3 × 3, 32]

[3 × 3, 32]
T × 29 × 32

Conv2d 4 5 × 5, (1 × 2), 16 T × 15 × 16

Res 4
[3 × 3, 16]

[3 × 3, 16]
T × 15 × 16

Reshape 2 - T × 240

FC 1 T × 1

as a binary-classification problem and train model on pre-
marked corpora. The binary cross-entropy is usually used as
the loss function:

Lvad = −
N∑
t=1

(
Yt log Ŷt + (1− Yt) log(1− Ŷt)

)
(2)

where N is the number of frame, Yt and Ŷt represent the VAD
label and the estimated label of the t-th frame, respectively.

Convolutional neural networks (CNNs) have been proved
effective in VAD [17]. The weights sharing technology makes
CNN can build a large model with few trainable parameters.
Dilating and gating improve the CNNs’ performance further,
which modeling the temporal sequence better than recurrent
neural networks (RNNs) [3], [4]. A skip connection creating
a shortcut in a sequential network effectively, which helps
prevent information loss along the data-processing flow by
adding a past output tensor to a later output tensor. Utilizing
residual connection improves the performance of CNN a lot
[4], [18]. Therefore we use ResCNN for VAD in this study,
which is shown in the lower part of Fig. 1.

C. Joint Training

The joint training approach for VAD with speech
enhancement was first introduced in [9], which pre-trained a
DNN to map the noisy to clean speech features firstly, then
apply a DNN-based VAD to discriminate speech against noise
backgrounds and optimized them jointly. In [10], researchers
proposed a denoising variational autoencoders (DVAE) for
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Fig. 1. Network architecture of the proposed joint training.

VAD, which combine the denoised feature and the hidden
variable from DVAE and effectively train the whole network
without pre-training.

For pre-train methods, the VAD is addressed using estimated
speech feature from a fully optimized speech enhancement
module. For the non-pre-trained methods, there usually applied
a hyper-parameter α to balance the trade-off between the
speech enhancement and VAD tasks. So the joint training loss
function can be defined as below:

Ljt = αLss + (1− α)Lvad, α ∈ [0, 1] (3)

where Lss represents the loss function of the speech
enhancement (Eq. 1). Lvad represent the loss function of the
VAD (Eq. 2).

However, tuning this hyper-parameter by hand is a difficult
and expensive process. With a mountain of experiments, we
found that when the gradient descent rate of each task is close
to each other, the learning curve tends to be smoother and
more stable, and will convergence better than a fixed value.
So we proposed a strategy to balance the trade-off between
speech enhancement and VAD by adjusting the α.

We adjust α based on two epochs of historical loss value
L
(i−1)
ss , L(i)

ss , L(i−1)
vad , L(i)

vad which is the loss function values
of speech enhancement and VAD task at epoch i − 1, and i.
We expect the rate of change or gradient of Lss and Lvad is

close to each other, which means C(i)
ss =

|L(i)
ss −L(i−1)

ss |
L

(i−1)
ss

should

close to C(i)
vad =

∣∣∣L(i)
vad−L

(i−1)
vad

∣∣∣
L

(i−1)
vad

. An absolute value is take here
to avoid obtaining same sign but in opposite direction. To
avoid adjusting α too often, we cache the C(t)

ss and C(t)
vad two

epochs and apply the adjusting strategy when both epochs
give much different gradient of loss function. The proposed
adjusting strategy is summarized in Algorithm 1. Specifically,
we start with an initial parameter α0. This procedure is iterated
until the loss function is fully optimized, which reached the

maximal training epoch I , for example.

Algorithm 1: Gradient Balance
Input: initial parameter α0

for i = 1, 2, 3, ..., I do
Compute L(i)

ss and L(i)
vad

if i > 1 then
Compute C(i)

ss = |L(i)
ss − L(i−1)

ss |/L(i−1)
ss

Compute C(i)
vad = |L(i)

vad − L
(i−1)
vad |/L

(i−1)
vad

Compute M (i) = C
(i)
vad − C

(i)
ss

if i > 2 and M (i) ∗M (i−1) > 0 then
Set
α←Max{Min{α+ (M (i) +M (i−1)), 1}, 0}

end
end

end

D. Network Architecture

In this study, we construct the speech enhancement model
based on CRN which is shown in Fig. 1. The input feature
is encoded by 5 layers of 2-D convolutional, which increase
the number of channels while reducing the size of the feature
map. Then a 64-dimensional sequence of feature vectors are
modeled by two LSTM layers with 64 cells. Subsequently, the
output sequence of the LSTM layers is decoded back to the
output feature by 5 layers of 2-D deconvolutional.

CRN benefits from the feature extraction capability of
CNNs and the temporal modeling capability of RNNs.
Moreover, the skip layer connection is applied to connect
each encoder layer to the corresponding decoder layer, which
can improve the flow of gradients when the network is deep.

For VAD part, we use a ResCNN, which contains 4
convolution layers, 4 residual blocks (ResBlocks) and 1 fully
connected layer (FC) to generate the label of each frame. Fig. 1
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TABLE II
AUC(%) COMPARISON AMONG RESCNN BASED APPROACHES WITH NON-JOINT TRAINING APPROACHES(NON-JT) AND JOINT TRAINING

APPROACHES(JT) ON NOISE MATCHED AND UNMATCHED CONDITIONS. BOLD FONT INDICATES THE BEST PERFORMANCE.

noise matched conditions noise unmatched conditions
SNR -5bB 0dB 5dB Avg. -5bB 0dB 5dB Avg.
Non-JT-noi 93.00 94.76 95.44 94.40 80.52 81.29 81.70 81.17
Non-JT-est 93.04 94.86 95.39 94.43 76.06 79.75 84.83 80.21
Non-JT-mid 92.74 94.83 95.38 94.32 75.64 83.78 90.52 83.31
JT-est[9,10] 93.34 94.90 95.42 94.55 83.44 88.31 91.86 87.87
JT-mid[10] 92.46 94.51 95.15 94.04 82.27 86.89 91.69 86.95
JT-est&noi 93.28 94.85 95.44 94.52 79.90 82.51 85.29 82.57
JT-mid&est[10] 93.08 94.79 95.31 94.39 86.29 89.92 92.31 89.51
JT-mid&noi(Pro.) 93.06 94.91 95.54 94.50 89.20 91.43 91.82 90.82

depicts the ResCNN architecture. The convolutional layer and
the residual block are alternately arranged to process the input
magnitude spectrum, which can significantly map features into
a more separable space. Subsequently, a high-level features
learned by these combination blocks are then fed into a fully
connected layer with size-1 cell to predict the target.

A more detailed description of the network architecture
is provided in Tab. I. The input size and output size of
each layer are specified in timeSteps × featureMaps ×
frequencyChannels format. The layer hyper-parameters are
given in (kernelSize, strides, outChannels) format. We
apply zero-padding to keep the size of time direction. In
speech enhancement part, the kernel size is 1 × 3 (Time ×
Frequency), the stride length is 1 × 2 (Time, Frequency).
Note that the number of feature maps in each decoder layer is
doubled by the skip connection. In VAD part, the kernel size
is 5×5 and 3×3 of convolutional layers and residual blocks,
respectively, which can significantly adjust the receptive fields.

III. EXPERIMENTS

A. Experimental Details

All experiments are conducted on TIMIT database [19]. We
randomly selected 2000 clean utterances from training set,
and use the TIMIT core test set as our test utterances. The
TIMIT core test set contains 192 utterances, 8 from each of
24 speakers. We concatenate the selected train utterances with
some silence segments of random length, which makes the
ratio of speech frames account for around 60%. Then mixed
with a speech shape noise (SSN) and 4 other types of noise
from the NOISEX-92 dataset [20]: babble noise, factory noise,
destroy engine noise, and destroyer operations room noise at
SNRs of -5, 0, 5 dB for training. Each noise is divided into two
non-overlapping segments for training and testing respectively.
To make the sample more generally and multiply, we intercept
noise segments from long noise randomly. Besides these four
types of noise, another four types of noise are used for
noise unmatched test, which includes an unseen factory noise,
buccaneer noise from NOISEX-92 and bus noise, street noise
from CHiME-4 dataset [21]. All signal is resampled to 16 kHz
before mixing.

For speech enhancement, we use noisy and clean speech
magnitude spectrum as input and output feature, which utilizes
the short-time Fourier transform (STFT) after divided the
speech signal into frames using 20 ms hamming window
with 10 ms overlap. So the input and output of each frame
is 161-dimensional. A log operation is applied to compress
the dynamic range and facilitate training. The number of time
frames T in the magnitude spectrum is 100 in our experiments.

The input of VAD part is a combination of the original
noisy speech magnitude spectrum and the output of the
second LSTM layer in speech enhancement part. Finally,
we got a 225-dimensional feature map for each frame. We
applied the Sohn’s method to the clean speech corpus to
get the label [22] for VAD. This method was proved to be
sufficiently reasonable to generate labels [2], and is same to
our comparison approaches [9], [10].

All models are optimized using Adabound optimizer with
a mini-batch size of 64, which employ dynamic bounds on
learning rates to achieve a gradual and smooth transition from
adaptive methods to SGD [23]. We use a constant dropout rate
of 0.4 at LSTM layers.

In order to evaluate the performance of the class imbalance
problem like VAD, we use the area under the curve (AUC)
as the evaluation metrics, which is the area under the receiver
operating characteristic (ROC) curve [24]. AUC is considered
as an overall metric of the VAD performance rather than the
detection accuracy [2], [8]–[10]. Higher value means better
performance.

B. Experimental Results

Tab. II lists the comparison results between non-joint-
training based approaches and joint-training based approaches
under noise matched and unmatched conditions with different
SNRs. Non-joint-training based approaches means only the
VAD module is applied or the two modules are trained
separately. For joint-training based approaches, the hyper-
parameter α in Eq. (3) is set to 0.1.

There are three types of input features for ResCNN-based
VAD, they are spectrum of noisy speech and estimated speech
of CRN-based speech enhancement module which denotes as
noi and est, respectively. And the output from the encoder
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Fig. 2. Visualization the output of an example for the posterior probability
(blue) and final decision (orange) of different approaches in babble noise
environment at 0 dB SNR level,.

(the second LSTM layer of speech enhancement model, as
illustrated in Fig. 1), which denotes as mid. In [9], the input
of VAD module is est, exclusively. In [10], the input of VAD
module contains est and mid. However, the performance of
these approaches are highly dependent on the performance
of speech enhancement part, which is more difficult than
VAD obviously. So we compared the impact of mid and it’s
combination. The values of each approach indicate the best
results use the same testing set under the same conditions.

By comparing Non-JT -noi and Non-JT -est, we
observe that applying speech enhancement first is beneficial
for VAD task under noise matched conditions but decrease
generalization ability obviously in low SNR. The performance
of these methods shows a slightly difference under matched
conditions. However, under noise unmatched conditions, the
joint training based methods shows better generalization
performance, which is benefits from the robust features
provided by speech enhancement. More specifically, JT -est
provides over 9.54% relative improvement than Non-JT -est,
and JT -mid provides over 4.36% relative improvement
than Non-JT -mid baseline under unmatched condition on
average. These results indicate that joint training can improve
the performance.

For these three types of input features, we make three types
of combination. Where JT -mid&est is same to the best model
of [10]. Compared with JT -mid&est, the performance of
the proposed JT -mid&noi method provides 1.46 % relative
improvement under unmatched conditions on average. In low

TABLE III
AUC (%) COMPARISON WITH AND WITHOUT GRADIENT BALANCE FOR

JT-MID&NOI ON AVERAGE. BOLD FONT INDICATES THE BEST
PERFORMANCE.

SNR -5bB 0dB 5dB Avg.
no GB α=0.05 89.54 92.08 92.99 91.53
no GB α=0.1 91.35 93.36 93.89 92.86
no GB α=0.2 88.81 90.88 91.76 90.49
no GB α=0.5 88.75 89.96 90.78 89.83
no GB α=0.8 89.63 92.29 92.72 91.55
with GB 91.58 93.48 93.74 92.93

SNR, specifically, the JT -mid&est is worse than the proposed
JT -mid&noi. This is mainly because the quality of the
estimated magnitude spectrum it depends on has lost some
useful information.

Fig. 2 shows a visualized comparison performance of the
VAD approaches on TIMIT core test set. The first two
subgraphs show speech and noisy speech with ground truth,
and the rests show the posterior probability and final decision
of each method. From the figure and tables, we observe that the
output of non-joint training method is noisy compared to joint
training methods. Again, the probability curve of the proposed
JT -mid&noi is smoother and providing the best performance.

Tab. III shows the impact of the hyper-parameter α and
the effects of gradient balance. We compare the performance
of JT -mid&noi approach when α is fixed to 0.05, 0.1, 0.2,
0.5 and 0.8 and α is dynamic adjusted by gradient balance
strategy. To apply the gradient balance, initial value of α0 is
set to 0.5, which is not optimal for this task but get similar
results. This result indicate that gradient balance can tuning
the hyper-parameter automatically.

IV. CONCLUSIONS

In this work, we improve the performance of VAD under
noise unmatched conditions in low SNR by a joint training
method. A CRN-based speech enhancement is employed to
get robust features for ResCNN-based VAD. More over, we
optimized the speech enhancement and VAD jointly by a
dynamic gradient balance strategy. We show that our proposed
method has obvious advantages in generalization ability than
compared approaches.
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