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Abstract— The purpose of speech enhancement is to extract
useful speech signal from noisy speech. The performance of
speech enhancement has been improved greatly in recent years
with fast development of the deep learning. However, these
studies mainly focus on the frequency domain, which needs to
complete time-frequency transformation and the phase
information of speech is ignored. Therefore, the end-to-end (i.e.
waveform-in and waveform-out) speech enhancement was
investigated, which not only avoids fixed time-frequency
transformation but also allows modelling phase information. In
this paper, a fully convolutional network with skip connections
(SC-FCN) for end-to-end speech enhancement is proposed.
Without the fully connected layers, this network can effectively
characterize local information of speech signal, and better
restore high frequency components of waveform using lesser
number of the parameters. Meanwhile, because of existence of
skip connections in different layers, it is easier to train deep
networks and the problem of gradient vanishing can also be
tackled. In addition, these skip connections can obtain more
details of speech signal in different convolutional layers, which is
beneficial for recovering the original speech signal. According to
our experimental results, the proposed method can recover the
waveform better.

I. INTRODUCTION

This Speech enhancement aims to suppress or reduce noise
interference for improving quality and intelligibility of speech
disturbed by various noise [1]. In the past few decades,
researchers have proposed many speech enhancement
methods, and those methods effectively improved the
intelligibility and quality of noisy speech. Traditional speech
enhancement methods contain spectral subtraction [2],
Wiener filtering [3], subspace algorithms [4, 5], statistical
model-based methods [6]. Later, with the continuous
development of the deep learning, the methods based spectral
mapping or mask have been proposed and widely used [7, 8, 9,
10, 11]. Although these methods successfully achieved speech
enhancement to some extent, there are still some problems.
They almost achieve speech enhancement in frequency
domain, which rely on the usage of short-time Fourier
transform (STFT) and focus only on processing magnitude
spectrogram and the phase information of speech signal is not
considered. In fact, the operation of the STFT needs many
parameters and cannot optimize performance of speech
enhancement absolutely. Moreover, this destruction is usually
inevitable, which finally results in the distortion of the

recovered speech signal.
To avoid transformation between the time and frequency

domain, the methods of performing series of operation on the
raw waveform attract more and more attention, especially in
the area of automatic speech recognition (ASR) [12, 13, 14,
15]. These methods achieve better performance than those
approaches that are based on the hand-crafted features (e.g.
MFCC and the cepstrum).
Furthermore, the characteristics of speech signal of time

domain and frequency domain are different greatly. In
frequency domain, the frequency components are represented
on the frequency bins, and repeated patterns of the formants
can be observed in low to middle frequency bins while
consonants can only occur in high frequency bins. However,
in time domain, the situation is totally different. A sample of
speech signal cannot alone represent any information, and its
information has to depend on its neighbor samples, which
makes the task of speech enhancement more difficult. And
that is why most researches choose to complete the target of
speech enhancement in frequency domain rather than in time
frequency. In order to use raw waveform to achieve better
performance, the convolution neural network (CNN) was
preferred [13, 14, 15], because the locally useful acoustic
information can be acquired by convolution operation.
However, there are few research researches that directly
enhance speech signal in time domain. Since the fully
convolutional network (FCN) was proposed for enhancing
magnitude spectrum of speech signal [16], an end-to-end
model of speech enhancement was subsequently proposed by
making use of the FCN [17, 18]. In general, this method is
defined in terms of a single model and directly operated on
raw waveform.
In this paper, in order to further improve the performance

of end-to-end speech enhancement, a fully convolutional
network with skip connections (SC-FCN) is proposed. There
are two benefits to use SC-FCN to conduct speech
enhancement. Firstly, comparing with traditional deep neural
network (DNN) and CNN [7, 19], this network only contains
convolutional layers, due to the lack of fully connected layers,
so lesser number of parameters are needed. Meanwhile, it is
well-known that neurons in the convolutional layer are
connected to a local region in the input data, and neurons in
the convolutional column share the parameters, thus local
information of speech signal can be effectively characterized

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

890978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



[17]. Moreover, differing from the FCN [16], in this work,
skip connections are added between convolutional layers,
which not only makes training networks easier but helps more
speech details reserved in different convolutional layers so
that the speech signal is recovered better.
The rest of this paper is organized as follows. In Section 2,

the related works are described. In Section 3, the details of the
proposed method are presented. Experimental setup is
provided in Section 4, test results are discussed in section 5,
and the conclusions are given in section 6.

II. RELATEDWORK

Although speech enhancement based on spectral features
have achieved great success, modeling raw waveform for
speech enhancement still needs to be investigated. At present,
many researches have conducted speech recognition by
directly processing raw speech signal [12, 13, 14, 15].
Recently, speech enhancement with raw waveform has begun
to attract many attentions. S.-W. Fu has proposed a speech
enhancement approach that directly uses the raw waveform
[17].
For the characteristics of raw waveform, convolutional

operation is considered as the first choice. In early work,
CNN was usually chosen as network model to process raw
waveform [12, 14, 20]. However, a sample of speech signal
and its neighbors are interdependent in time domain, which
makes it difficult for fully connected layers to generate high
and low frequency parts of raw waveform in the same time
[17]. Similarly, it is not easy for the hidden fully connected
layers to process raw waveform. Thus, the FCN was
considered to map raw waveform [17, 18]. Compared to the
traditional CNN, the benefit of the FCN is that all fully
connected layers of the CNN are replaced by convolutional
layers [17, 21].
Skip connections have been studied for a long time [22, 23,

24, 25, 26]. Skip connections were added to the DNN to
achieve very deep networks, which greatly improved the
performance of image recognition [23, 24]. In addition, skip
connections also played an important role in encoder-decoder
networks to achieve image denoising [25]. Additionally, Ming
Tu proposed a similar idea that skip connections were added
to all layers of the DNN to accomplish speech enhancement
[26]. Those studies have achieved experimental goal to some
extent by using skip connections.

III. END-TO-END SPEECH ENHANCEMENT

As mentioned above, the most research works of speech
enhancement were completed in frequency domain, and they
focused mainly on processing magnitude spectrum and the
phase information was ignored. In fact, the phase is important
for the quality and intelligibility of the reconstructed speech.
Although the phase components have been taken into
consideration by using complex components [27, 28] in later
studies, the STFT is still necessary in these methods, which
increased computational complexity to some extent. Due to
these problems, end-to-end (i.e. waveform-in and waveform

out) speech enhancement have become the interest of recent
researches. End-to-end speech enhancement model can
simply be described in Fig. 1.

Fig. 1 End-to-end speech enhancement model

As shown in Fig. 1, the input is noisy signal and output is
an estimate of clean signal. And end-to-end speech
enhancement model is very simple, and the time-frequency
domain conversion is unnecessary, which reduces the
complexity of computation. The key point of the whole end-
to-end speech enhancement system is the design of speech
enhancement model since the raw waveform is used. The
deep learning model has shown the great advantages in
speech enhancement, so how to design better networks for
raw waveform to achieve speech enhancement becomes the
main topic. In [17], the author proposed raw waveform-based
speech enhancement by using FCN. In this paper, in order to
further improve quality and intelligibility of the enhanced
speech, SC-FCN model is proposed.
Like the FCN, the SC-FCN also only consists of

convolutional layers, which is beneficial for the speech
enhancement model to efficiently preserve local structures of
the features and lesser weights are used. In order to train SC-
FCN easier, the dimension of all convolutional layers is one,
which not only reduces the number of parameters in each
layer， but also reduces the computation cost. The significant
benefits of the SC-FCN is its skip connections (e.g. a residual
block), as shown in Fig. 2.

Fig. 2 Skip connection: a residual block

Fig. 2 shows the basic residual block made up of the skip
connection. x(t) is the input of the residual block. F(x(t)) and
H(x(t)) denote a residual mapping and an underlying mapping,
respectively. By adding skip connections, the original
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mapping is rewritten as H(x(t)) = F(x(t))+x(t)), and the
network fits a residual mapping, that is, F(x(t)) = H(x(t))-x(t),
rather than H(x(t)). This makes tiny change become obvious
and more sensitive to the output of networks. By adding skip
connections to the network, we hope that the network fits a
residual mapping instead of directly fitting a desired
underlying mapping [24, 25].

Fig. 3 The architecture of SC-FCN

More details about the proposed network can be found in
Fig. 3. As shown in Fig. 3, the proposed fully convolutional
network with skip connections only consists of convolutional
layers, and there are no max pooling layers in the network like
WaveNet [29]. Differing from the architecture of the basic
residual network in [24], the residual block is nested each
other. Since the networks fit a residual mapping rather than an
underlying mapping by adding skip connections, it easier to
optimize the networks and obtain better performance. This
implies that it is possible to optimize the networks while
fitting the residual mapping of residual mapping, and the
performance of speech enhancement can be better improved.
In our network, nine convolutional layers are used, meanwhile
a total of four skip connections are used and four residual
blocks (e.g. ① ② ③ ④ ) are obtained.

Similar to Fig. 2, four blocks in Fig. 3 can be defined as
follows:

)t(x+))t(x(F=))t(x(H 111 (1)
)t(x+))}t(x(H{F=))t(x(H 212 (2)
)t(x+))}t(x(H{F=))t(x(H 323 (3)
)t(x+))}t(x(H{F=))t(x(H 434 (4)

where x1(t), x2(t), x3(t) and x4(t) denote the inputs of four
residual blocks, respectively. F is a residual mapping function,
and H expresses the identity mapping.

IV. EXPERIMENTAL SETUP

In this section, we will describe the experimental setup,
database and network parameters.

A. Data Set
To evaluate the performance of speech enhancement using

the fully convolutional network with skip connections, the
TIMIT database [31] is chosen as the training and test sets.
For the training set, 4620 sentences from different speakers in
the TIMIT database are used as the training set of clean
speech, and three noise types (Babble, F16, Factory) are used
as the training set of noise. Meanwhile, three noise types and
4620 sentences are artificially mixed at four different SNR
levels (-5dB, 0dB, 5dB, 10dB). We randomly selected 4620
sentences from the mixed speech to build 4-hour training set
of noisy speech. For the test set, the clean speech consists of
201 sentences from TIMIT database and three seen noise
types (Babble, F16, Factory) are mixed as test sets. In
addition, extra three unseen noise types (office, street, volvo)
are also chosen to combine with clean speech of test set to
obtain noisy speech. The noisy speech of the testing set is also
formed at four different SNR levels (-5dB, 0dB, 5dB, 10dB).
All signals are down sampled to 8 kHz. In our experiments,

the raw waveform is processed in a frame-wise manner, and
512 samples are extracted from raw waveform to form a
frame as used in [17].

B. Network Setup
In order to further improve quality and intelligibility of

speech enhancement, we designed a network called SC-FCN
based on recent success of the FCN model [17]. The
architecture of our proposed model is shown in Figure 3. The
proposed network has nine convolutional layers with zero
padding and preserve the same size as the input. Four skip
connections are added to few stacked layers in the network,
and every skip connection is passed through different
convolutional layers, and our experiment showed that this
configuration can work very well. In our experiments, all of
convolutional layers consist of 28 filters and the dimension of
a filter is 29*1. Moreover, the last layer only has 1 filter.
To compare our proposed approach, the CNN and FCN are

chosen as the reference network models. The inputs of the
CNN and FCN are the same as the input of the SC-FCN. The
CNN has six convolutional layers and three fully connected
layers (1024 nodes), whereas the FCN contains nine
convolutional layers. Note that the determination of both the
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number of training epoch and model structure all depend on
the error of the validation set.
In addition, Leaky rectified linear units (LeakyReLU) [32]

is used as the activation function for all the models. The
Adaptive moment estimation (Adam) [33] is chosen as the
learning optimizer to train network models.

C. Evaluation Metrics
The performance of speech enhancement for each approach

was evaluated by measuring the perceptual evaluation of
speech quality (PESQ) [34] and the short-time objective
intelligibility (STOI) [35]. The score of the PESQ varies from
-0.5 to 4.5. The higher score indicates the better quality. In
addition, the score of the STOI is between 0 and 1. Similarly,
the intelligibility of the recovered speech is better when the
score of the STOI is higher.

V. RESULTS AND DISCUSSION

The average PESQ and STOI scores of the proposed FCN
with skip connections (i.e. SC-FCN), CNN and FCN are
presented in Fig. 4 and Fig. 5.
According to Fig. 4 and Fig. 5, we can observe that the

performance of the SC-FCN is consistently better than the
CNN and FCN, both in the average PESQ and STOI, which
proves that the proposed method is more effective in
improving the quality and intelligibility of speech than the
other two networks. Especially, the average PESQ and STOI
scores of the SC-FCN significantly outperform that of the
CNN. This further indicates the convolution operation is more
advantageous than fully connected layers in processing the
raw waveform to achieve speech enhancement.
In order to further observe the performance of different

methods for different noise types at four different SNR levels
(-5dB, 0dB, 5dB, 10dB), the PESQ and STOI scores of the

Fig. 4 The average PESQ of different methods at four different SNR
levels.

Fig. 5 The average STOI of different methods at four different SNR
levels.

enhanced speech results are presented in Table Ⅰ and Table Ⅱ.

Table Ⅰ: Performance comparison of the PESQ under different methods.

SNR
(dB)

Methods

Babble F16 Factory
CNN FCN SC-FCN CNN FCN SC-FCN CNN FCN SC-FCN

-5 1.6207 1.8378 1.9099 1.7341 1.9403 2.0264 1.9432 2.2103 2.2512
0 1.8868 2.2173 2.2766 2.0975 2.3538 2.4278 2.2094 2.5411 2.5809
5 2.0542 2.5182 2.5634 2.3514 2.7077 2.7598 2.3709 2.7957 2.8323
10 2.1370 2.7228 2.7715 2.4913 2.9671 3.0177 2.4618 2.9689 3.0145

Office Street Volvo
CNN FCN SC-FCN CNN FCN SC-FCN CNN FCN SC-FCN

-5 1.7095 1.9357 1.9086 1.8358 2.1509 2.1626 2.0211 2.6391 2.7256
0 2.0858 2.3654 2.3583 2.1522 2.5265 2.5577 2.2673 2.9074 2.9614
5 2.3191 2.6909 2.7109 2.3414 2.8048 2.8433 2.4099 3.0430 3.0891
10 2.4395 2.9088 2.9384 2.4444 2.9864 3.0450 2.4638 3.1071 3.1604
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As shown in Table Ⅰ and Table Ⅱ, the PESQ and STOI of
the SC-FCN are higher than CNN and FCN for different noise
types (three seen noise: Babble, F16, Factory; three unseen
noise types: office, street, Volvo) at four SNR levels (-5dB,
0dB, 5dB, 10dB) except for the PESQ of office noise at -5 dB
and 0 dB. Specifically, the performance of the enhanced
speech by using the SC-FCN and FCN is much more effective
than CNN. It is mainly because characteristics of the signal in
time domain is greatly different from that in frequency
domain, that is, the feature in time domain must depend on its
neighbors. However, the fully connected layers are weak in
processing raw waveform, and the high frequency
components are often missed. By comparing experimental
results between the SC-FCN and FCN, we can find that the
SC-FCN can better improve the quality and intelligibility of
the enhanced speech by adding skip connections to networks.
This indicates it’s effective for the denoising by adding
some skip connections to the network to force the network
to learn residual signal.

VI. CONCLUSIONS

In this paper, an approach based on the fully convolutional
network with skip connections was proposed to process raw
waveform to further improve performance of end-to-end
speech enhancement. Inspired by the FCN, the skip
connections were added to the FCN. By adding skip
connections, the network fitted a residual mapping instead of
fitting an underlying mapping, which makes the learning
process easier and convergence faster. The experimental
results showed that the proposed network achieved the better
performance in end-to-end speech enhancement.
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