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Abstract— In this paper, we investigate the effectiveness of 
training data expansion methods to distinguish between normal 
and abnormal lung sounds. Acoustic characteristics of lung 
sounds vary according to auscultation points. In conventional 
classification methods, acoustic models were usually trained 
using only lung sounds recorded at the same auscultation points 
to that of evaluation data. This results in a small amount of 
training data and, thus, hinders the achievement of a high 
classification rate. To overcome this problem, we performed 
training data expansion by selecting the lung sounds, which are 
expected to be useful for generating acoustic models with higher 
classification performance, among sound samples recorded at 
other auscultation points. We investigated the two types of 
selection approach: selection based on the similarity of acoustic 
features in sound samples and selection based on the confidence 
measure represented by the difference between the acoustic 
likelihood for a normal or abnormal respiratory candidate. Our 
experiments showed that both selection types have the potential 
to increase the classification performance between normal and 
abnormal lung sounds, as well as the classification performance 
between healthy and unhealthy subjects. 

I. INTRODUCTION 

Auscultation is one of the most popular and cost-effective 
medical examination methods for identifying respiratory 
illnesses. This is because lung sounds of individuals with 
respiratory disorders frequently contain abnormal respiratory 
sounds known as adventitious sounds [1]. There are several 
types of adventitious sounds that depend on the condition of 
the abnormal internal organs and the degree of inflammation. 
However, it is difficult for individuals without expertise in 
auscultation to correctly identify types, for an accurate 
diagnosis. For this reason, automated determination of 
respiratory diseases, using respiratory sounds, is required.  

Several studies to detect specific adventitious sounds have 
been performed based on the acoustic analysis of respiratory 
sounds [2-7]. The primary purpose of these studies was to 
assist doctors in making diagnoses. We have developed a 
classification procedure for distinguishing between normal 
and abnormal respiration, based on a maximum likelihood 
(ML) approach, using hidden Markov models (HMMs) [8-10]. 
Our purpose is to easily detect unhealthy subjects at home. In 
our detection procedure, the acoustic likelihoods for an 
abnormal and a normal respiration candidate were compared 
for the classification. This procedure demonstrated the 
usefulness of a stochastic approach in the detection of 
abnormal respiratory sounds in unhealthy subjects. However, 
we generate stochastic acoustic models by using a limited 

amount of training data that has been recorded from the same 
auscultation points to that of the evaluation sample. This is 
because of the difference in acoustic characteristics, caused 
by the acoustical variety of adventitious sounds and frequent 
contamination into lung sounds by noises. These phenomena 
depend on auscultation points. For example, in unhealthy 
subjects, lung sounds recorded from upper auscultation-points 
contain continuous adventitious lung sounds, such as wheezes 
and rhonchi, while sounds recorded at lower points contain 
discontinuous adventitious sounds, such as fine and coarse 
crackles. Heart sounds appear in the sounds recorded at the 
front left [10]. Then, when lung sounds recorded at different 
auscultation points from the evaluation sample were used in 
the training of acoustic models, classification performance 
usually decreased.  

To address this problem, we investigated expansion 
methods that could increase the amount of training data. We 
assumed that all lung sound data recorded at different 
auscultation points (in reference to recordings at a specific 
point) were not useful for generating acoustic models for the 
target sample classification. Even though some samples were 
recorded at other points, and their acoustic characteristics 
were similar to those of data recorded at the target point, these 
data could be useful for generating the point-dependent 
acoustic models. Therefore, in our methods, we have selected 
the samples among those recorded at other points, then, both 
all samples recorded at the target point and the selected 
samples were used to generate topic-dependent acoustic 
models. In this paper, we investigated two methods for 
expansion. One is based on the similarity of distribution in the 
acoustic feature parameters between the target sample and 
samples recorded at a specific point. The other is based on the 
confidence of the target sample classification result [9], which 
was calculated from the difference between acoustic 
likelihood for a normal and abnormal respiratory candidate. 
Even though these fundamental techniques to measure the 
similarity have been used in various scientific areas, the 

Fig. 1 Auscultation points on chest and back. 
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selection of lung sounds recorded at different auscultation 
points used to generate better acoustic models is an original 
approach. In this paper, we indicate the effectiveness of these 
two methods experimentally, discussing their advantages and 
disadvantages. 

II. LUNG SOUND DATA 

A. Training and Evaluation Data 

Using an electronic stethoscope, which incorporated a 
piezoelectric microphone, we recorded lung sounds at thirteen 
typical auscultation points in healthy and unhealthy subjects 
with pulmonary emphysema, indicating a sign for the 
beginning inspiration and expiration phase to the subjects. 
The auscultation points are shown in Figure 1, where FR5 and 
FL6 are second intercostal spaces. At most one lung sound 
sample for each auscultation point, in each subject, was 
recorded. Lung sound samples from each subject were 
recorded one at a time. The total number of recorded samples 
from unhealthy subjects was 605 and that from healthy 
subjects was 837. The average number of respiratory phases 
per sample was approximately 10. 

B. Manual Segmentation of Lung Sound 

A lung sound sample ܵ  comprised several successive 
respiratory phases ܺ:  
      ܵ = ଵܺ ⋯ ௟ܺ ⋯ܺ௅,					ሺ݈ = 1,⋯ , (ܮ                  (1) 
where ௟ܺ  is the l-th phase in which each respiratory period 
was manually detected. In our expansion approach, we 
performed a respiratory-phase-based ( ௟ܺ ) expansion and 
sample-based (S) expansion.  

We prepared labels corresponding to the acoustic segments ݓ based on acoustic [1] and temporal features manually [9]. 
In our labeling, we assumed that an abnormal respiratory 
phase was composed of N successive acoustic segments and 
that a normal respiratory phase comprised one breath segment. 
Then, a segment (symbol) sequence ܹ of a respiratory phase 
(period) ܺ  is represented as ܹ = ଵݓ ௜ݓ⋯ ሺ݅					ே,ݓ⋯ = 1,⋯ ,ܰ),                           (2) 
where the i-th acoustic segment is given as ݓ௜ . In our research, 
each adventitious sound was presented using a continuous 
acoustic or a discontinuous acoustic segment. These segments, 
and their boundaries, were used in a training process 

described in section III.  

III. DATA EXPANSION STRATEGY 

A. Flow of Data Expansion and Classification 

The architecture of our classification system between 
normal and abnormal respiration, including our data 
expansion procedure, is shown in Figure 2. The system 
comprises two processes: training and testing.  

In the training process, three types of procedure are used to 
generate acoustic models. One procedure is to generate 
conventional acoustic HMMs for each kind of segment and 
respiratory phase (inspiration/expiration). Because of the 
specific acoustic characteristics for each auscultation point, 
the conventional HMMs were generated using lung sounds 
recorded from the same auscultation points. The classification 
method that uses these models is referred to as Baseline I, in 
this paper. The other two procedures used a different data 
expansion function. These are described in the following 
subsection.  

In the test process, for a respiratory phase ܺ  in a test 
sample, the likelihoods for a normal and abnormal candidate 
were calculated for each respiration phase, using each type of 
HMMs. The likelihood is composed of the acoustic likelihood 
calculated from HMMs ߠ  and the segment-sequence 
likelihood logܲሺܹ), derived from segmental bigram, where P 

indicates probability. The segment (sequence) Ŵ  with the 
highest likelihood for the respiratory phase is given using 
Bayes’ theorem:  ෡ܹ = argmaxௐ ܲሺܹ|ܺ, ൎ					 (ߠ argmaxௐ ሺlog ܲሺܺ|ܹ, (ߠ ൅ ߛ log ܲሺܹ))                (3) 

The weight factor γ was obtained experimentally to achieve 
higher performance. Then, the most likely segment sequence ෡ܹ ௔௕  for an abnormal respiratory candidate and its likelihood log ܲ൫ ෡ܹ ௔௕|ܺ, ൯ߠ ; and the likelihood log ܲሺܹ௡௢|ܺ, (ߠ  for a 
normal candidate ܹ௡௢  were obtained. The classification 
result was obtained by comparing these likelihoods. 

B. Lung Sound Data Expansion 

Basic strategy for data expansion is to select additional 
training samples from the set of lung sounds recorded at other 

Fig. 2 Flow of data expansion and classification between normal and abnormal respirations. 
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auscultation points. We assumed that acoustic characteristics 
of effective samples from other points were similar to those of 
samples recorded at the target point. Based on this assumption, 
we devised two methods: one (Method I) based on the 
similarity between the acoustic characteristics distribution of 
each candidate sample, and that of all samples recorded at 
target point; and the other (Method II) based on the 
confidence of each candidate sample classification result. This 
confidence was calculated through the difference between the 
acoustic likelihood for a normal and abnormal respiratory 
candidate. Although both methods took into account the 
similarity of acoustic characteristics, Method I dealt with the 
similarity more directly. 

1) Method I: Each candidate sample S, used for data 
expansion, is examined to check if it can be used as an 
additional training sample, based on the similarity in 
distributions of acoustic feature parameters (in this study, 
mel-frequency cepstral coefficients (MFCC) and power were 
used). To calculate the similarity, we used Bhattacharyya 
distance between the distribution of the samples recorded at 
the target auscultation-point, and that of the candidate. A 
smaller distance indicates similar acoustic characteristics. 

First, we calculated three average distance values 
( ,ேுܫ ,ே௎ܫ and	ܫ஺௎ ) using all samples recorded at same 
auscultation points.  ܫேு  was calculated using normal lung 
sounds recorded from healthy subjects. While using the 
samples recorded from unhealthy subjects, ܫே௎ was obtained 
using normal phases not including adventitious sounds, and ܫ஺௎  was calculated using abnormal phases including 
adventitious sound segments. Next, labelled for the same 
conditions as above, three distance values 
(ܱேு, ܱே௎, and	 ஺ܱ௎) between the distribution of all samples 
recorded at the target point and that of each candidate sample 
recorded at other points. 

For a lung sound candidate recorded from a healthy subject, 
if ܱேு <  this candidate was selected as a training	ேு,ܫேுߙ
sample. For candidate recording from an unhealthy subject, if 
both ܱே௎ < ே௎ܫே௎ߙ  and ஺ܱ௎ < ஺௎ܫ஺௎ߙ  were satisfied, this 
candidate was selected. Here, α is a constant which controls 
the amount of training data. For small α, a higher similarity 
was required to satisfy the conditions. Consequently, the 
training data stayed relatively small. This selection was 
performed for each lung sound sample S. 

2) Method II: In each candidate phase ܺ , we calculated 
likelihood difference d between the likelihood of normal 
phase logܲሺܹ௡௢|ܺ, (ߠ  and that of abnormal phase log ܲ൫ ෡ܹ ௔௕|ܺ, ൯ߠ , where ߠ  indicates the HMMs generated 
using lung sounds recorded at a specific point. If X is a phase 
from a normal subject, then d is represented as follows: ݀ = log ܲሺܹ௡௢|ܺ, (ߠ − log ܲ൫ ෡ܹ ௔௕|ܺ,  ൯                    (4)ߠ
Otherwise, if X is a phase from an unhealthy subject, we set ݀ = −݀. A candidate was selected as an additional training 
sample when ݀ was larger than the predefined threshold ்ܦ . 
If ்ܦ  was large, acceptance as training data required samples 
with high confidence. If ்ܦ  was zero, the samples that were 

recognized correctly by using HMMs ߠ  were selected. 
Selection in this method was performed for each phase X. 

For the proposed methods, both the samples recorded at a 
specific auscultation points and the selected samples, were 
used to generate new HMMs. 

IV. EVALUATION EXPERIMENTS  

A. Experimental Conditions 

We performed classification tests to evaluate the effect of 
expanding training lung-sound samples. The lung sound data 
were sampled at 5 kHz. Every 10 ms, a vector of 6 MFCCs 
and power was computed using a 25-ms Hamming window. 
The acoustic HMMs for normal respiration were generated 
using the respiratory sounds from healthy subjects, and the 
models for adventitious sound segments were generated using 
the sounds from unhealthy subjects. HMMs with three states 
and two Gaussian probability density functions were used. 

For the respiratory phase test samples there were 254 
normal phases from 53 healthy subjects and 254 abnormal 
phases from 53 unhealthy subjects, recorded at auscultation 
points FR5, and 217 normal phases from 47 healthy subjects 
and 217 abnormal phases from 47 unhealthy subjects, 
recorded at FL6 in Figure 1. These samples were used for the 
training of the auscultation-point-dependent original HMMs. 
However, we performed a leave-one-out cross validation for 
each test phase. The numbers of lung sound samples for data 
expansion were described in Section II. 

B. Classification of Normal and Abnormal Respiration 

 First, to investigate the variation of acoustic characteristics 
we calculated the three average values (ܫேு, ,ே௎ܫ and	ܫ஺௎) of 
Bhattacharyya distance using samples recorded at FR5. Table 
I shows each average value and standard deviation. This table 
indicates that the variation in acoustic characteristics of 
abnormal phases is larger than that of normal phases. 
Variation from unhealthy subjects is also larger than that from 
healthy subjects. 

 Next, we prepared two types of baseline HMMs. One 
(Baseline I) was generated using the lung sounds recorded at 
the same auscultation point to that of the test input phase. The 
other was auscultation-independent HMMs (Baseline II) 
generated by using all samples. We also prepared two other 
types of HMMs by performing our data expansion based on 
the procedure of Methods I and II. We then carried out 
classification experiments, using each type of the HMMs, to 
distinguish between normal and abnormal respiratory phases. 
Classification performance for each method, and the 
approximate number of additional respiratory phases, are 

TABLE   I 
AVERAGE DISTANCE VALUES BETWEEN LUNG SOUNDS RECORDED AT SAME 

AUSCULTATION POINT FR5 [%] 

Phase 
Average S. D. 

Type Respiratory Subject ܫேு Normal Healthy 0.76 0.69 ܫே௎ Normal Unhealthy 1.38 1.30 ܫ஺௎ Abnormal Unhealthy 2.55 2.45 
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shown in Table II. In this table, the best performances from 
using Method I and II are listed, which were obtained by 
varying thresholds α and ்ܦ . The average classification rate 
of 87.4% for Baseline II was lower than that of Baseline I: 
݌) 89.8% = 0.048) . This result indicates that exhaustive 
expansion of lung sound samples recorded at other 
auscultation points, is not necessarily tied to the improvement 
of classification performance. Meanwhile, both the 
classification rate of 91.5% for Method I and 91.4% for 
Method II were higher than those of Baselines I and II (݌ =0.10 and 0.12, respectively). This validates training sample 
expansion by selecting samples based on acoustic similarity. 

Finally, we compare Method I with Method II. For test 
samples recorded at FR5, Method I achieved a rate of 91.1 % 
by using 553 additional phases, while Method II achieved 
90.7 % by using 518 additional phases; this demonstrated that 
Method I has a better potential than Method II. However, the 
performance of Method I decreased drastically to 88.6 % 
when the number of additional samples was 1320, whereas 
Method II maintained performance at 90.6 % when all 
samples classified correctly were used (்ܦ = 0); the total 
number of additional samples was approximately 4700. These 
results show that the performance of Method II is robust to 
the fluctuation of thresholds values, for the selection of 
additional samples. Because it is difficult to determine the 
most appropriate thresholds in advance, we conclude that 
Method II is more practical than Method I. 

C. Classification of Unhealthy and Healthy Subjects 

We performed experiments using the aforementioned four 
classification methods on unhealthy and normal subjects. 
Classification results were obtained by comparing the sum of 
likelihoods for all normal respiratory candidates ∑ log ܲሺܹ௡௢| ௟ܺ, ௅௟ୀଵ(ߠ , with that of all abnormal respiratory 
candidates ∑ log ܲ൫ ෡ܹ ௔௕| ௟ܺ, ൯௅௟ୀଵߠ 	in a test sample S. 

The obtained classification rates are shown in Table III. 
According to the small number (200) of evaluation samples, 
sufficient analysis is difficult. However, the table indicates the 
proposed methods show promise for the classification 
between healthy and unhealthy subjects. 

V. CONCLUSIONS 

This paper presents the expansion methods of training data 
to distinguish between normal and abnormal lung sounds, by 
performing the selection of suitable lung sound samples from 
those recorded at different auscultation points. We 
investigated two expansion methods based on the similarity of 

acoustic characteristics between the samples recorded at 
target point and those recorded at other points. One selection 
method was based on the similarity of distribution of acoustic 
features and the other was based on the difference of 
likelihoods between the likelihood of the correctly classified 
normal/abnormal candidate and that of the other 
abnormal/normal candidate. According to the experimental 
results obtained for the classification between normal and 
abnormal respirations and those for the classification between 
healthy and unhealthy subjects, the performance of two 
proposed methods, which adopted the data selection based on 
the acoustical similarity, were better than that of the baseline 
without data expansion. Even though the selection method 
based on the similarity of distribution of acoustic features 
achieved higher performance, from the view point of 
robustness to set predefined thresholds, we think the selection 
method using the likelihood difference is more practical. 
However, we need to devise an appropriate method to set the 
most suitable thresholds for practical use of data expansion in 
future.  
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TABLE   II 
CLASSIFICATION PERFORMANCE BETWEEN  NORMAL AND ABNORMAL LUNG 

SOUNDS  AND NUMBER OF ADDITIONAL PHASES 

Method Normal [%] Abnormal [%] Average [%] Additional 
phases 

Baseline I 90.4 89.2 89.8 0 

Baseline II 84.7 90.0 87.4 5460 

Method I 91.1 91.9 91.5 550 

Method II 90.0 92.8 91.4 520 ~ 4720 

TABLE   III 
CLASSIFICATION PERFORMANCE BETWEEN HEALTHY AND UNHEALTHY 

SUBJECTS [%] 

Method Healthy Unhealthy Average  

Baseline I 84 89 88.5 

Baseline II 86 88 87.0 

Method I 95 84 90.0 

Method II 87 91 89.0 
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