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Abstract—Despite considerable recent progress in deep learn-
ing methods for speech emotion recognition (SER), performance
is severely restricted by the lack of large-scale labeled speech
emotion corpora. For instance, it is difficult to employ complex
neural network architectures such as ResNet, which accompanied
by large-sale corpora like VoxCeleb and NIST SRE, have proven
to perform well for the related speaker verification (SV) task.
In this paper, a novel domain adaptation method is proposed
for the speech emotion recognition (SER) task, which aims to
transfer related information from a speaker corpus to an emotion
corpus. Specifically, a residual adapter architecture is designed
for the SER task where ResNet acts as a universal model for
general information extraction. An adapter module then trains
limited additional parameters to focus on modeling deviation for
the specific SER task. To evaluate the effectiveness of the pro-
posed method, we conduct extensive evaluations on benchmark
IEMOCAP and CHEAVD 2.0 corpora. Results show significant
improvement, with overall results in each task outperforming or
matching state-of-the-art methods.

I. INTRODUCTION

Speech Emotion Recognition (SER) aims to automatically
analyze emotional categories from speech utterances. Over
recent years, SER has drawn increasing attention in line
with the rapid growth in demand of applications such as
telephone call centres, educational systems and intelligent
robotics. Recently, deep learning based systems have achieved
significant progress for SER, but to be successful, sufficient
labeled data is needed, particularly due to the complexity
of emotional information. However, existing corpora, such as
IEMOCAP [15], CHEAVD [14], FAU-AIBO [29], and EMO-
DB [30], are generally size-limited, in part due to annotation
cost, and also suffer label ambiguity.

One possible solution is to utilize emotion information from
multiple corpora. Based on this approach, several transfer
learning and multi-task learning (MTL) based methods have
been proposed [1], [2], [3], [4]. Transfer learning focuses on
adapting knowledge from available auxiliary resources to the
target domain. For example, Latif et al. exploited transfer
learning across several corpora via a Deep Belief Network
(DBN) model [1]. Song et al. [2] proposed a joint transfer
subspace learning and feature selection (JTSLFS) algorithm.
MTL treats different training and evaluation corpora as multi-
ple target tasks. Zhang et al. [3], [4] experimented with several
multi-task learning methods including single-task (ST), multi-
task feature selection/learning (MTFS/MTFL), group multi-

task feature selection/learning (GMTFS/GMTFL) on sung
emotion recognition task and SER.

Existing research mainly focuses on cross-corpus methods
in the scope of emotion data. However, due to the limited size
of emotion corpora, SER performance is far from satisfactory
and it is still difficult to apply successful deep learning
architectures like ResNet and DenseNet to further improve
performance. In [28], it was shown that the annotation of
emotion can be transferred from the visual domain (faces) to
speech domain (voices) through cross-domain distillation on
the VoxCeleb dataset [13]. In [3], [4], [16], [17], the authors
investigated using speaker characteristics like gender and age.
These two areas of research strongly suggest a relationship
between emotion and speaker characteristics.

Based on this view, we propose a domain adaptive model
which can utilize a common representation between emotion
and speaker identity to further improve SER accuracy, using
ResNet as a backbone architecture. Specifically, the proposed
method aims to tackle the lack of labeled corpus by employing
a residual adapter model [12] to transfer the information from
VoxCeleb to a specific SER target dataset. The residual adapter
resembles ResNet [10], with the major difference that all
convolutional layers are replaced by adapter modules. Each
module contains two types of parameter; one type are domain-
agnostic, and act as a universal model for general information
extraction, the other are domain-specific parameters used for
adaptation. The domain-agnostic parameters are trained on the
initial task, then fixed to reduce the model complexity during
domain adaptation on the target task. In this paper, the residual
adapter model is trained using VoxCeleb2 data with speaker
labels, then emotion corpora are used to train the domain-
specific parameters, and different fully-connected layers are
used to predict the classification score, as shown in Fig.1.

There are also some semi-supervised learning based meth-
ods, prompted by the wide availability of unlabeled speech
data. These commonly use auto-encoders to reap benefits from
a combination of labeled and unlabeled data [5], [6], [7].
In [5], a self-contained semi-supervised auto-encoder (SSAE)
framework was proposed, which integrates a supervised path
and an unsupervised auto-encoder. In [11], Parthasarathy et
al. presented ladder network based semi-supervised learn-
ing, which can outperform the auto-encoder based methods.
Other methods include domain adaptive least squares regres-
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Fig. 1. illustration of speaker to emotion domain adaption framework. There are three different adaptation methods to utilize the pre-trained speaker network,
including feature extractor, fine-tuning and domain adaptation, the dashed line indicates network training. ”FC” means fully connected layers.

sion (DaLSR) [8] and domain-adaptive subspace learning
(DoSL) [9]. The main difference lies in that the proposed
residual adapter utilizes supervised learning to exploit the
relationship between speaker and emotion data.

To prove the effectiveness of our method, we first use
ResNet that is trained with emotion data only as a baseline
system, and then conduct a series of experiments as shown in
Fig.1, including: (1) A ResNet trained by VoxCeleb2 data as
the feature extractor, then the classifier trained for SER. (2)
The same ResNet fine-tuned with emotion data – the com-
mon practice in transfer learning. (3) The proposed residual
adapter method, furthermore testing the adapter module alone,
aiming to demonstrate that features learned from the speaker
classification task can be beneficial to SER. The results of
(3) on IEMOCAP improvised and CHEAVD both significantly
exceed baseline systems, establishing the effectiveness of the
proposed method.

II. OVERVIEW OF SPEAKER-TO-EMOTION
DOMAIN ADAPTATION FRAMEWORK

SER encompasses some existing problems. (1) Deep learn-
ing based methods have become prevalent in recent years [20],
[21], [22], owing to the powerful representation learning
ability of neural networks. In general, increasing network
depth benefits performance, but the limited scale of emotion
corpora greatly restricts the network complexity in practice.
In previous studies, most deep learning models contain only
a few layers and need to be specifically designed for emotion
corpora. Some powerful deep learning models, such as ResNet,
which achieve great success in related tasks, cannot effectively
be utilized due to the limited training data. (2) Existing meth-
ods mainly focus on cross-corpus learning among emotion
corpora, but due to the difficulty and cost of labeling emotion
data, cross-corpus methods still have limitations.

By contrast, labeled data is abundant for traditional speech
tasks. Although the corpora from other speech domains lack
emotion labels, they may still contain some related information
which can assist in SER model training. Speaker-labeled
corpora are potential choices, as described in Section I, where
speaker characteristics such as age and gender can influence

SER results. This fact indicates that there is some shared
representation between speaker characteristics and emotion.
On the other hand, the scale of speaker corpora are much larger
than those for emotion, a fact that aids in training a deep neural
network. Based on those motivations, the VoxCeleb2 [13]
corpus is selected in this paper for initial model training.

In order to utilize speaker labels, a complex network is
first trained by speaker corpora, and then adapted to the
target emotion corpora. We therefore explore three possible
adaptation methods, as shown in Fig.1. The first method is
a feature extractor, which constructs an emotion classifier by
retraining the topmost FC layer. The second method is fine-
tuning, which takes the same structure as the feature extractor,
then all network parameters as well as the FC classifier, are
fine-tuned using the emotion corpora. Although these two
methods can exploit the information from both speaker and
emotion data, they have some obvious problems. Firstly, the
network parameters are pre-trained for speaker verification,
which may be quite different from SER, therefore directly
utilizing the model may not be a appropriate choice. Secondly,
due to the limited scale of the target emotion corpora, training
the whole network may be difficult and may cause an over-
fitting problem. On the other hand, the fine-tuning stage may
result in forgetting the source corpora, reducing the benefit of
the auxiliary information.

To address these issues, this paper attempts to establish the
third method, a new domain adaptation. In this method, the
deep learning model is first trained using VoxCeleb2 data with
speaker labels as usual. But during the adaptation stage, some
extra emotion-specific parameters are added to the original
model, then the emotion corpora are utilized to only fine-tune
the additional parameters which coexist alongside the previ-
ously trained parameters. Through the proposed framework,
the information forgetting problem is avoided, and because
the emotion corpora is only utilized to fine-tune a part of
the network, the over-fitting problem may be mitigated. Based
on our motivation, we exploit the residual adapter model, as
demonstrated in the following section.
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III. RESIDUAL ADAPTER MODEL

A. Model design

The motivation for a residual adapter model is to dynamical-
ly fit multiple domains. The idea can be accomplished by in-
corporating domain-specific parameters into the deep learning
model. However, incorporating too many additional parameters
for each domain may cause over-fitting, therefore the residual
adapter model aims to reduce the number of domain-specific
parameters while sharing more domain-agnostic parameters.
The basic idea of constructing an adapter module is to linearly
parameterize the convolutional filter group, which is the same
as introducing an intermediate convolutional layer. Assuming
there is a convolutional filter group with size H × W , ap-
plied on T input feature maps, written as F ∈ RH×W×T .
The K filter bank added with introduced parameters can be
written as a linear combination G =

∑K
k=1 (α:k + Fk), where

α ∈ RT×K represents additional parameters. By introducing
these additional parameters, the convolutional layer can be
seen as the combination of domain-specific parameters α and
domain-agnostic parameters F . Applying the filter group to
input x, we can obtain

G ∗ x =
K∑

k=1

(α:k + Fk) ∗ x = α ∗ x+ F ∗ x (1)

in implementation α is a 1 × 1 × T ×K filter bank. For the
training progress, firstly the model is trained on the initial task,
using a large corpus. Next, the parameters are fixed and other
domain adapters are trained using the target domain corpus.

B. Adapter module and network structure

The residual adapter module modifies the basic residual
block in ResNet. The original residual block contains two 3×3
convolutional layers, a shortcut connection is linked between
the input and output, which can be denoted as in the following
equation:

ReLU(x+ ω2 ∗ReLU(ω1 ∗ x)) (2)

where ω1 and ω2 are parameters of the convolutional layers,
the activation function is ReLU. In order to make the network
able to dynamically fit multiple domains, for each convolu-
tional layer, a bank of 1 × 1 filters is applied on the input
tensor, then the output is added to the original convolutional
output, the output dimension of 1 × 1 filters is maintained
unchanged. The modified convolutional layers can be written
as in the following equation:

f(x) = ω ∗ x+ α ∗ x (3)

Since a bank of 1 × 1 filters has far fewer parameters, the
complexity of the domain-specific part is reduced, which
further prevents the over-fitting problem. The adapter module
in this paper is shown in Fig. 2.

Batch normalization (BN) [19] plays an important role in
deep neural network training, and BN layers can re-scale the
feature distribution. In the adapter module, BN is applied
after the feature sum for each domain, and because BN has

Conv3x3

Conv1x1

+ ReLUx BN Conv3x3

Conv1x1

+ ReLUBN +

Fig. 2. Adapter module where the 3 × 3 filters are domain-agnostic. The 1
× 1 filters and BN layers are domain-specific.

learnable parameters, they also provide some domain-specific
parameter adaptation. In this paper, the residual adapter model
is constructed on the ResNet20 model with a network structure
outlined in Table I. Three basic blocks are stacked separately
for each stage, thus there are 20 convolutional layers counting
the first 7×7 layer and last fully-connected (FC) layer. The
stride of the last convolutional layer of each stage is set to
2 and the output dimension is doubled. Finally the network
outputs a 256-dimensional feature map with size 25 × 13,
followed by global average pooling (GAP) to downsample the
feature size to 1× 1. FC and softmax layers are then utilized
to predict the final emotion label, and a cross-entropy loss
function is used.

TABLE I
THE RESNET20 NETWORK STRUCTURE USED IN OUR METHOD

Layer name Output Parameter
Conv1 400 × 200 7 × 7, 32, stride = 1

Max Pooling 200 × 100 3 × 3, stride = 2

Stage1 100 × 50
[
3× 3, 32

3× 3, 32

]
× 3

Stage2 50 × 25
[
3× 3, 64

3× 3, 64

]
× 3

Stage3 25 × 13
[
3× 3, 128

3× 3, 128

]
× 3

Average Pooling 1 × 1 25 × 13
Fully Connected 256:classes

IV. EXPERIMENTS AND ANALYSIS

A. Data description and pre-processing

In this study, both speaker data and emotion data are
utilized. For speaker-labeled data, we choose the VoxCele-
b2 corpus [13]. VoxCeleb2 is a large-scale speaker-labeled
database, prevalent for SV tasks, that was collected from
more than 6000 celebrities on YouTube. VoxCeleb2 consists
of 2442 hours, with more than a million speech utterances,
covering different ages, genders, accents and scenes. Due to
the diversity of the data source, VoxCeleb2 data is likely to
contain rich emotion information, but in this paper we only
utilize the speaker labels.

For the emotion part, we select Interactive Emotional
Dyadic Motion Capture (IEMOCAP) [15] and Chinese Nat-
ural Audio-Visual Emotion Database (CHEAVD) [14] 2.0
databases. IEMOCAP is performed by 10 skilled actors and
divided into 5 sections where each section contains two actors.
IEMOCAP has scripted and improvised parts, depending on
the recording scenarios. We choose the improvised data part
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TABLE II
THE WEIGHTED ACCURACY (WA) AND UNWEIGHTED ACCURACY (UA) OF ALL SYSTEMS (IN %)

Methods CHEAVD IEMOCAP
UA WA UA WA

Plain 32.27(±3.60) 42.66(±1.33) 59.00(±2.53) 65.65(±1.85)
Feature Extractor 32.91(±2.90) 40.39(±0.25) 57.85(±1.25) 66.52(±0.25)
Fine-tuning 31.23(±3.59) 41.45(±0.91) 62.83(±1.59) 68.02(±0.53)
Res. Adapter 34.08(±1.84) 43.96(±0.54) 67.58(±2.41) 72.73(±0.58)
Adapter 32.10(±1.25) 41.54(±0.76) 57.62(±3.27) 68.89(±0.36)

in order to exclude undesired contextual information. Labels
of neutral, angry, happy and sad are used.

CHEAVD 2.0 is a Chinese emotion corpus, the official data
of the Multimodal Emotion Recognition Challenge (MEC)
2017. CHEAVD contains data selected from Chinese movies,
soap operas and TV shows. It contains 8 emotion labels (angry,
happy, sad, worried, anxious, surprise, disgust, neutral). The
corpus is divided into training, validation and testing sets. We
use the training/validation split for performance evaluation, the
hyper-parameter tuning is based on validation set, keeping the
evaluation that same as in [25].

Magnitude spectrograms are utilized as input features, with
the spectrograms extracted over 40 ms Hamming windows
with a 10 ms window shift and 1600 FFT points. Then 0-
4000 Hz spectrogram are utilized since human vocal expres-
sion is mainly located in this frequency range. The speech
utterances are cut into 2 s portions with 1 s overlap, and zero-
padding applied for utterances shorter than 2 s. Thus the input
spectrograms have a size of 400×200. For each spectrogram,
we then apply a µ-law expansion, as used and described in
our previous paper [18].

B. Experiment setup

For VoxCeleb2 data, we randomly choose 50 speakers to
train the ResNet20 with adapters. For IEMOCAP improvised
data, we conduct a 5-fold cross-validation, where 4 sections
are used to train the network and the remaining 2 speakers are
used as validation and test data. For network training, we make
use of the PyTorch deep learning framework with SGD and
Nesterov momentum update utilized, starting at 0.9. We train
the network over 30 epochs for each dataset. For VoxCeleb2,
the initial learning rate is set to 0.05, then divided by 10 at
the 21st epoch, with a weight decay of 0.0001. For emotion
corpora, the initial learning rate is 0.01, divided by 10 at the
11th and 21st epochs. As suggested in [12], we use a large
weight decay for emotion corpora, set to 0.001 and 0.005 for
CHEAVD and IEMOCAP respectively. The loss function is
cross-entropy loss and all experiments are run 5 times with
the results averaged.

C. Results and analysis

All experimental results are listed in Table II in terms of
weighted and unweighted accuracy (WA and UA respectively).

Baseline: We use IEMOCAP and CHEAVD to train a plain
ResNet20 with results in the top row of Table II. Obviously,
emotion data is insufficient to train a ResNet, so UA, WA are
unsatisfactory for IEMOCAP and CHEAVD, in line with our
expectations.

Fine-tuning: Using a large corpus to train a deep network,
then using a small corpus to fine-tune is the common practice
of transfer learning. We use VoxCeleb2 data to pre-train a plain
ResNet20 then, after training, the FC layer of the network
is replaced and the whole network fine-tuned by the target
emotion corpus. The result is not significantly better than
baseline, likely to be because the number of parameters is
too large for the smaller extent of emotion data to train. On
the other hand, forgetting the learned speaker information may
be another problem which would reduce the accuracy.

Feature extractor: When fixing the parameters learned by the
primary domain, the network becomes a feature extractor. In
this experiment we fix all ResNet20 parameters and train the
FC layer with emotion corpora. The performance is worse than
the fine-tuning method, this indicates utilizing only speaker
information is not appropriate for SER.

Residual Adapter: We next evaluate the residual adapter
model. We use VoxCeleb2 data to train the same ResNet20
with adapter modules. During the adapting process, all of the
parameters of the 3× 3 filters are fixed, then the adapters are
trained using emotion data. The result significantly outper-
forms the baseline system, especially for IEMOCAP, where
the UA and WA achieve 67.58% and 72.73%. On CHEAVD
they achieve 34.08% and 43.96%. We attempted to increase
the number of speakers during residual adapter training, but
the performance did not benefit from this, perhaps because a
more complex model is needed.

Evaluation of adapters: Finally, we want to clarify if the
improvement in SER performance has benefited from domain-
agnostic parameters learned by VoxCeleb2, or simply because
adapters have fewer parameters so the model can be trained by
emotion corpora. To answer the question, we keep the same
experiment configuration with the residual adapters, retain the
model but set all 3 × 3 convolutional filter weights to 0, so
the domain-agnostic parameters will offer no information. As
a result, the accuracy significantly drops, which proves the
necessity of domain-agnostic parameters.
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TABLE III
COMPARISON TO EXISTING MODELS ON IEMOCAP AND

CHEAVD (IN %)

Corpus Model UA WA

IEMOCAP

LSTM-ELM [23] 63.89 62.85
CNN-LSTM [21] 62.00 67.30
CNN-GRU [24] 64.22 71.45

CNN-Att.pooling [18] 66.38 70.18
Our model 67.58 72.73

CHEAVD
MEC 2017 baseline [26] 27.20 39.90

LSTM-FCN [25] 31.80 46.30
Our model 34.08 43.96

D. Comparison to state-of-the-art systems

We compare our model to some existing published results.
The reported models include LSTM-ELM [23], CNNLST-
M [21], [25], CNN-GRU [24], we also evaluate the CNN-
Att.pooling model in our previous paper [18], their results are
listed in Table III. For IEMOCAP, one author [27] reported
higher performance, but their model utilized phoneme infor-
mation, which is different from the above methods. Compared
to [25], our method does not exceed their WA but has
better UA, indicating that the performance of data-limited
small classes is improved. In fact these results show that the
proposed residual adapter model can effectively utilize speaker
characteristic information from the VoxCeleb2 training data,
yet also provide discrimination ability for the SER task. In
future we believe there is potential to exploit a deeper network
for SER to further improve performance.

V. CONCLUSIONS

This paper has proposed a novel domain adaptation method
to transfer the related information from a speaker corpus to
an emotion corpus. This method can effectively address the
lack large-scale labeled emotion training data by exploiting
universal information from VoxCeleb2. Specifically, a residual
adapter architecture is designed, in which ResNet20 acts as
a universal model for general information extraction, and
the adapter module uses limited parameters which focus on
modeling the deviation for specific SER tasks. Evaluations
on benchmark IEMOCAP and CHEAVD2.0 tasks demonstrate
the effectiveness of the proposed domain adaptation method,
with overall results outperforming or matching state-of-the-art
methods. Furthermore, this method demonstrates the general
potential for utilizing speech related large-scale data to im-
prove SER performance.
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