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Abstract—In this paper, the performance of Affine-DTW,
which performs appropriate time alignment between source and
target features in voice conversion (VC), is experimentally and
thoroughly investigated. In traditional VC, parallel data are often
required to train a mapping model between source and target
features. While VC with non-parallel data is also studied to
avoid collecting parallel data, the quality of its converted speech
is still inferior to the traditional one with parallel data. One
approach to further progress in VC is exploiting both parallel
and non-parallel data, the former of which is pre-stored and
the latter of which is assumed to be easily collected. In this
case, it is still worthwhile to study time-alignment techniques
to obtain appropriate alignment of parallel data. Affine-DTW
is a technique in which dynamic time warping (DTW) and
coarse conversion based on affine transformation are iteratively
performed. In Affine-DTW, time alignment and parameters of
affine transformation can be analytically calculated so that it can
be easily adopted as pre-processing in VC. However, the influence
on the performance of trained models based on the obtained
alignments has not been well investigated experimentally. Hence,
this paper investigates the performance of Affine-DTW in terms
of quality improvement of converted speech in traditional VC
methods based on Gaussian mixture models, non-negative matrix
factorization and neural networks. Experimental results show
that Affine-DTW obtains appropriate alignments and the natural-
ness improvement of converted speech in subjective assessments
is observed in trained models based on the alignments.

I. INTRODUCTION

Voice conversion (VC) is a technique of modifying non-
linguistic information of a speech utterance while maintaining
its linguistic information [1]. The modification technique can
be applied to various applications such as converting speaker
identity of output speech of text-to-speech synthesis and so
on [2], [3], [4].

In many traditional VC, parallel data is required to learn
a mapping model from source to target features, which is
constructed from pairs of utterances with the same linguistic
content from both source and target speakers. For the map-
ping models, Gaussian mixture models (GMM), deep neural
networks (DNN) and non-negative matrix factorization (NMF)
are widely used [2], [5], [6]. In the case of frame-by-frame
mapping, alignment between source and target sequences is
needed and usually it is obtained by dynamic time warping
(DTW) [1]. VC with parallel data has an advantage that
the statistical model only needs to focusing on learning the
mapping between different speaker identities. On the other
hand, VC with non-parallel data is studied to avoid collecting
parallel data and mismatch of frame pairs in alignment [7],

[8], [9]. In VC with non-parallel data, however, the quality
of its converted speech is still inferior to the traditional one
with parallel data. One approach to further progress in VC is
exploiting both parallel and non-parallel data, the former of
which is pre-stored and the latter of which is assumed to be
easily collected. In this case, it is still worthwhile to study
time-alignment techniques to obtain appropriate alignment of
parallel data.

In VC with parallel data, DTW is most widely used for
time alignment. DTW minimizes the mean square error be-
tween source and target feature vector sequences. That is, the
difference in the mel-cepstral coefficients is the criterion for
alignment. Naive DTW assumes that the distance between two
frames containing the same linguistic information is close,
but not in practice, especially in the case of cross-gender
conversion. Since mel-cepstral coefficients represent not only
linguistic information but also speaker identity, the obtained
alignment can be affected by these represented information. To
overcome this defect, iterative alignment techniques or implicit
alignment techniques are studied [10], [11], [12]. Affine-DTW
is one of the iterative alignment techniques [10]. Affine-
DTW performs as following five steps: (1) performing general
DTW, (2) estimating the parameters of affine transformation
based on the obtained alignment, (3) applying the estimated
affine transformation to source features, (4) performing DTW
between the transformed source and the original target feature
vector sequences and (5) the three steps (2–4) are iterated.
Given the influence on alignment by the difference of speaker
identities, it can be natural to iterate alignment between
converted features and training models based on the alignment.
If we use GMM or DNN for the conversion model, however,
it does not work well. In other words, the more complex
mapping model the more easily over-fitting based on the rough
alignment.

In Affine-DTW, time alignment and parameters of affine
transformation are analytically calculated so that it can be
easily adopted as pre-processing in VC. However, the influence
on the performance of trained models based on the obtained
alignments has not been well investigated experimentally.
Hence, this paper investigates the performance of Affine-
DTW in terms of quality improvement of converted speech.
Experimental results show that Affine-DTW obtains appropri-
ate alignments and the naturalness improvement of converted
speech in subjective assessments is observed in trained models
based on the obtained alignments.
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II. RELATED WORKS

In traditional VC with parallel data, time alignment between
source and target utterances is needed. One of the major
techniques for time alignment is DTW which obtains frame-
by-frame time-alignment between them by dynamic program-
ming [1]. DTW assumes that the distance between two feature
vectors containing the same linguistic information is close,
even if they are derived from different speakers. The assump-
tion, however, is not in practice so that some approaches
have been proposed to overcome the issue. One approach
is to avoid utilizing parallel data, i.e. VC with non-parallel
data. In non-parallel VC without additional transcribed data,
iterative adaptation or representation learning are studied [7],
[9]. They are technically important but the quality of their
converted speech is still inferior to VC with parallel data. With
additional transcribed data, phonetic posteriorgrams obtained
from a recognizer are often used as speaker-independent
representation of features [13], [12]. Another approach is not
to align frame by frame externally, i.e. sequence-to-sequence
modeling [11], [14]. This approach can avoid frame mismatch
but requires complex procedure of training models or much
training data. DTW is superior to the above methods in its easy
implementation and computation, and obtaining appropriate
time alignment is important to exploit parallel data efficiently.
To obtain appropriate alignment by DTW, Affine-DTW has
been proposed, which iterates DTW and coarse conversion
based on affine transformation between source and target
features [10]. In the next section, we explain Affine-DTW in
detail.

III. AFFINE-DTW

Affine-DTW assumes that the conversion between source
and target mel-cepstrum coefficients can be coarsely repre-
sented as global affine transformation. The coarse conversion
modeling has an affinity with the fact that the difference in
vocal tract length is represented as linear transformation in
cepstral space [15]. In addition, parameters of affine trans-
formation are analytically calculated so that it is convenient
as pre-processing of VC. Affine-DTW performs as following
five steps: (1) performing general DTW, (2) estimating the
parameters of affine transformation based on the obtained
alignment, (3) applying the estimated affine transformation to
source features, (4) performing DTW between the transformed
source and the original target feature vector sequences and
(5) the three steps (2–4) are iterated. A sequence of feature
vectors from an utterance of a source speaker is defined as
X = [x1, ...,xM ], while Y = [y1, ...,yN ] represents that
from an utterance of a target speaker. In naive DTW, a warping
pathW = w1, ..,wK aligns between source and target feature
vectors. That is, W is a sequence of grid points, where wk

corresponds to a point (m,n), the m and n of which indicate
frame indices in source and target sequences, respectively. The
distance between two frames from source and target sequences
is represented as δ (m,n) = δ (wk), and then the warping path

obtained by naive DTW is shown as follows

Ŵ = argmin
W

K∑
k=1

δ (wk) . (1)

Note that the constraints of transition of grid points and the
weights of local path are applied.

In Affine-DTW, parameters of affine transformation θ =
{A, b} are introduced and the distance is represented as
follows

δθ (m,n) = (yn − (Axm + b))
2
, (2)

In the step of coarse conversion of Affine-DTW, the parameters
are calculated based on the criterion of minimization of the
mel-cepstrum distortion between source and target sequences,
which is shown as follow

θ̂ = argmin
θ

1

K

K∑
k=1

δθ (wk) . (3)

Note that the estimation of the parameters is not performed
from an utterance but the whole training data set. In the step
of DTW, except for consideration of weights of local paths,
DTW minimizes almost the same distortion, which is shown
as follows

Ŵ = argmin
W

K∑
k=1

δθ (wk) . (4)

This is, the distortion between source and target sequences is
expected to decrease along with the number of iterations in
Affine-DTW. In this paper, we confirm experimentally that it
decreases and converges and Affine-DTW improves the quality
of VC based on GMM, NMF and DNN.

IV. EXPERIMENTAL EVALUATIONS

A. Experimental conditions

To evaluate the performance of Affine-DTW, subjective
evaluations were carried out. We compared the quality of
converted speech of each trained model based on an align-
ment which was obtained by i-th iteration of Affine-DTW
(i = 0, 1, ..., 10). For the comparison, preference tests about
naturalness and speaker identity of converted speech were
conducted, in which converted speech of two trained models
based on each alignment obtained from i-th and j-th iterations
of Affine-DTW were compared, e.g. 0-th (non-affine) vs. 1-st
iterations or 2-nd vs. 4-th iterations.

For mapping models, three models were adopted, which
were GMM, DNN and NMF. For GMM-based VC, a joint
density GMM with cross-diagonal covariance was used [2].
The number of mixtures was 512 and training of GMM was
performed until convergence of its likelihood. For DNN-based
VC, feed-forward NN was used [5]. The number of hidden
layers was 4, and each of them had 1024 units. The activation
function of hidden and output layers were LeakyReLU and
identity mapping, respectively. As an optimization method of
feed-forward NN, AMSGrad with a learning rate of 0.01 was
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used [16]. The training epochs were repeated 3 times, and
the batch size is 512 in each epoch. In both GMM-based and
DNN-based VC, input and output features were mel-cepstrum
coefficients from the 1-st to 39-th and dynamic features were
exploited. For the the generation of the static features, the
Maximum Likelihood Parameter Generation (MLPG) algo-
rithm was used [17]. In NMF-based VC, the conversion is
implemented in spectral space, i.e. NMF is trained to map
between source and target spectral sequences based on time
alignment in cepstral space [18]. The size of bases was 200 and
parameters of NMF was iteratively updated until convergence.
As spectral features, spectra from the 1-st to 512-th bins were
used. In addition, fundamental frequency was converted based
on global linear transformation in all the cases.

The ATR Japanese speech dataset B-set were used as two
source and target pairs, which were male-to-male and male-
to-female pairs (MHT to MMY and MHT to FKS) [19]. From
the dataset, subset I and J of phoneme-balanced sentences
were used for validation and testing, respectively. For training,
subset A and B were used. Each subset had about 50 sentences.
Speech signals were sampled at 20 kHz. Feature vectors were
extracted with a 1-ms shift and the feature vector consisted of
spectra of 513 bins or the 0-th through 39-th mel-cepstrums,
which were derived from WORLD analysis [20] (D4C edi-
tion [21]). In Affine-DTW, parameters of affine transformation
were analytically calculated only with training set.

In the preference tests, the numbers of subjects were 24–
27 for each test. For each naturalness evaluation, AB test was
conducted in which 20 or 30 pairs of two converted speech
were suggested and each subject chose one which sounded
more natural speech. For each speaker identity evaluation, in a
similar manner to naturalness one, ABX test was conducted. In
the test, two converted speech and reference speech were sug-
gested and each subject chose converted one which sounded
more similar to the reference one in terms of speaker identity.

B. Experimental results

The results show that Affine-DTW obtains appropriate
alignments and the naturalness improvement of converted
speech is observed in trained models based on the align-
ments. Fig. 1 shows mel-cepstrum distortion (MCD) between
converted features from source ones based on affine trans-
formation and original target ones, along with the number
of iterations of Affine-DTW. In the figure, MCD is getting
to convergence along with the number of iterations. The
alignments which are obtained by each iteration of Affine-
DTW are shown in Fig. 2. In both male-to-male (M2M) and
male-to-female (M2F) cases, alignments obtained by 0-th and
1-st iterations of Affine DTW are obviously different but ones
obtained by i-th and j-th (i, j > 1) are not so different.
From this result, it may be said that 1-st iteration of Affine-
DTW is sufficient, but it is not in subjective evaluations. The
results of subjective evaluations are shown in Fig. 3. In GMM-
based VC, alignment obtained by 1-st iteration of Affine-DTW
(Affine-1) is superior to one obtained by naive DTW (the 0-
th iteration of Affine-DTW) in both M2M and M2F cases.
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Fig. 1. Mel-cepstrum distortion (MCD) between converted features from
source ones based on affine transformation and original target ones, along
with the number of iterations of Affine-DTW. In both male-to-male (M2M)
and male-to-female (M2F) cases, the convergence of MCD along with the
number of iterations is observed.

Although Affine-i and Affine-j (i, j > 1) are comparable in
both cases, in the comparison between Affine-1 and Affine-
10, in case of M2F Affine-10 has naturalness improvement
and they are comparable in the other case. The result can
indicate that Affine-DTW improves the quality of GMM-based
VC until the convergence of its alignment.

The other results, in cases of NMF-based and DNN-based
VC, also show almost the same but there is some room for
discussion. In case of M2M-NMF, the result is interesting be-
cause Affine-2 is inferior to Affine-1 while Affine-1 is superior
to naive DTW, it is not in GMM-based VC. The reason is
probably the qualitative difference between the two methods.
NMF-based VC is briefly regarded as the replacement of
spectral bases based on alignment. In other words, it can
be said that NMF-based VC is sensitive to the difference of
alignments. In the process of iteration of Affine-DTW, each
updated alignment may not be always more appropriate than
previous one, and the alignment in the middle of the process
to the convergence can affect the performance of NMF. The
result of M2M-DNN is also interesting. In the result, Affine-
1 and naive DTW are comparable while in the other cases
Affine-1 is superior to naive DTW. Additionally, in the case
of M2M-DNN Affine-10 is superior to Affine-0, while in the
other methods the number of iteration does not effect on
the results of M2M. One reason for this incomprehensible
result can be the problem of tuning hyper-parameters of
DNN. In our experiments, the hyper-parameters of DNN and
random seed of its implementation are fixed. The difference
of alignments, however, change the size of training dataset
so that the training procedure is different among each trained
DNN. In addition, the optimal number of iterations of Affine-
DTW can depend on mapping models because the coarse
conversion in Affine-DTW is regarded as GMM-based VC
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Fig. 2. Visualizations of examples of time alignments obtained by naive DTW and Affine-DTW. The left figure depicts time alignments between utterances
of male and male, the other depicts that of male and female. In both figures, the difference of non-affine alignment and the other alignments obtained by
Affine-DTW is clearly shown, while the differences among ones by Affine-DTW are small. Although the differences can not be confirmed in the figures, the
alignments are changed along with the number of iterations of Affine-DTW.
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Fig. 3. Results of subjective evaluations on naturalness of converted speech of GMM-based, NMF-based and DNN-based VC, which are trained with the
alignments obtained by Affine-DTW of each number of iterations. Note that only in M2M-DNN Affine-1 was comparable to None-Affine so the comparison
between Affine-10 and None-Affine was performed.
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Fig. 4. Results of subjective evaluations on speaker identity of converted speech of GMM-based, NMF-based and DNN-based VC, which are trained with the
alignments obtained by Affine-DTW of each number of iterations.

which has a single component of Gaussian. In other words, the
assumption that the conversion between source and target mel-
cepstrum coefficients can be coarsely represented as global
affine transformation is advantageous for GMM-based VC.

In summary, Affine-DTW improves the quality of VC based
on GMM, NMF and DNN with parallel data, while the optimal
number of its iterations depends on pairs of source and target
speakers and possibly mapping models, but the distortion
between converted from source and original target features
in Affine-DTW decreases along with the number of iterations.

V. CONCLUSIONS

This paper has experimentally investigated the performance
of Affine-DTW which is a technique to obtain appropriate time
alignment, in the quality of voice conversion with parallel data.
Affine-DTW iterates DTW and coarse conversion based on
affine transformation. In our experiments, the performance of
Affine-DTW has been investigated in subjective evaluations
with traditional GMM-based, NMF-based and DNN-based
methods. The results have shown that Affine-DTW improves
the quality of VC, while the optimal number of its iterations
depends on pairs of source and target speakers and possibly
mapping models. Affine-DTW is a simple pre-processing of
VC so that it can be easily adopted in many VC methods
with parallel data. One of our future works is to obtain more
appropriate time alignment, e.g. by utilizing more complex
conversion model in the conversion step of Affine-DTW. In
this case, we must care about the relevance of over-fitting of
conversion models and appropriateness of alignment. Finally,
we claim that in the comparison between methods with parallel
and non-parallel data, we should be careful not to neglect the

minimum effort to obtain appropriate alignment.
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