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Abstract—Generating a high dynamic range (HDR) image
from multiple exposure images is challenging in the presence
of significant motions, which usually causes ghosting artifacts.
To alleviate this problem, previous methods explicitly align the
input images before merging the controlled exposure images.
Although recent works try to learn the HDR imaging process
using a convolutional neural network (CNN), they still suffer from
ghosting or blurring artifacts and missing details in extremely
under/overexposed areas. In this paper, we propose an end-to-end
framework for detail-preserving HDR imaging of dynamic scenes.
Our method employs a kernel prediction network and produces
per-pixel kernels to fully utilize every pixel and its neighborhood
in input images for the successful alignment. After applying the
kernels to the input images, we generate a final HDR image using
a simple merging network. The proposed framework is an end-
to-end trainable method without any preprocessing, which not
only avoids ghosting or blurring artifacts but also hallucinates
fine details effectively. We demonstrate that our method provides
comparable results to the state-of-the-art methods regarding
qualitative and quantitative evaluations.

I. INTRODUCTION

High dynamic range (HDR) imaging can significantly en-
hance the viewing experiences by generating an image that has
a broad dynamic range of natural luminance and thus closely
resembles what humans see. While human visual systems can
perceive from very dark to very bright levels of light, standard
digital cameras can only capture the restricted dynamic range
due to limitations of sensor capacity. Therefore, the resulting
low dynamic range (LDR) images inevitably lose information
in severely underexposed or overexposed (saturated) regions.
In order to alleviate this problem, several approaches [1]–[3]
have been proposed to produce HDR images using specialized
camera hardware, but these devices are highly expensive
and not easily accessible. To address these difficulties, more
practical HDR imaging methods that do not require high-
priced devices have been proposed.

The most common approach is to take a series of LDR
images at bracketed exposures and merge them into a single
HDR image [4]. Although this strategy produces satisfactory
results when the LDR images are perfectly registered without
any motion difference, it usually generates ghosting or blurring
artifacts when there is a shift between the images. Specifically,
these undesirable artifacts mainly result from two factors that
make it challenging to find corresponding pixels among the
LDR images: occlusion of moving objects and image misalign-
ment due to camera motions, which are unavoidable in the real
world. While the artifacts caused by global image misalign-
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Fig. 1: Our goal is to generate an HDR image that avoids un-
desirable artifacts while preserving details. Input LDR images
are shown in (a) where the blue box indicates the reference
image. Our HDR result after tonemapping is displayed in (b).
In (c), the regions with both large foreground motions and
severe saturation in LDR images are shown. The proposed
method handles both issues successfully, compared to other
state-of-the-art methods, as shown in (d).

ment can be quite mitigated using homography transformation
[5], [6], foreground motions are much more challenging to
handle. Especially, large-scale foreground motions introduce
severe ghosting artifacts in the final HDR image.

In order to address the ghosting artifacts, a number of
methods [7]–[14] focused on finding moving objects, under
the assumption that the input images are nearly static. These
approaches detect moving pixels and then simply reject or
downweight them when merging the images. Hence, they
sometimes suffer from the lack of LDR contents available
to reconstruct an HDR image, especially in the objects in
a large motion. To deal with scenes with larger displace-
ment, many approaches have been proposed to carry out
more sophisticated alignment of input images using optical
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flow [15], [16] before merging them into an HDR image.
However, optical flow methods basically assume brightness
constancy which is always violated in the case of images
with different exposure levels, thus additional steps [17]–
[19] to meet the constancy assumption are executed. Besides,
inevitable optical-flow estimation error leads to color artifacts
and distortions in the final HDR image.

Recent approaches have adopted deep neural networks
(DNNs) to develop the HDR imaging procedure. Kalantari et
al. [17] divided the HDR imaging process into two stages, i.e.,
alignment and HDR merge, and used optical flow algorithm
for the alignment stage and a convolutional neural network
(CNN) for the HDR merge stage. However, the CNN-based
merging method still fails to resolve the aforementioned arti-
facts resulting from the optical flow, as shown in Fig. 1. Wu
et al. [6] modeled the HDR imaging as translation problem
and implemented the whole process using a CNN to cope
with large foreground motions, but the input images are first
registered using homography transformation and then fed to
the CNN. Although this approach has shown improvement in
dealing with ghosting artifacts, it often fails to avoid blurring
artifacts and hallucinate fine details in under/overexposed
regions. These DNN-based methods need a pre-alignment
process, which not only disenables end-to-end training but
also corrupts information at the boundaries of input images
and takes considerable time.

To overcome the above-mentioned challenges, we propose
an end-to-end framework for HDR imaging of dynamic scenes.
In contrast to previous methods which directly synthesize
HDR images, our model builds upon a kernel prediction
network that can generate per-pixel kernels to be applied to
input LDR images. These kernels are expected to determine
each pixel’s importance in creating HDR images, thus suppress
pixels in undesirable regions. The resulting kernels are applied
to input images, followed by the merging network to produce
a final HDR image. The merging network is a straightforward
CNN which performs weighted averaging of the aligned im-
ages. The proposed HDR imaging network learns to suppress
undesirable artifacts and preserve fine details in an end-to-end
manner.

In summary, the main contributions of the paper can be
summarized as:

• We propose an end-to-end framework for HDR imaging
of scenes with foreground or background motions. Our
method does not require any pre-alignment procedure
that rather introduces unavoidable artifacts and decreases
training efficiency.

• Our method can avoid ghosting or blurring artifacts and
hallucinate plausible details effectively even when large
object motion or severe saturation is present, achieving
comparable performance to the state-of-the-art.

• We propose a kernel prediction network for HDR imag-
ing, which generates a unique kernel for each pixel in
input images. The generated kernels can fully utilize
the contents of input images and perform an accurate
alignment.

II. RELATED WORK

HDR imaging has been the subject of extensive research
area over the past decades, thus we restrict ourselves to the
HDR imaging with dynamic scenes. We categorize the relevant
approaches into three classes.

A. Pixel Rejection Based Methods

These approaches assume that all the input images are
globally registered so that pixels with motion can be detected
and rejected directly. Various algorithms are utilized to identify
moving pixels. The algorithms in [7], [12]–[14] compute
continuous or binary weights based on the probability that a
pixel belongs to the static/moving parts. Several works [8], [9]
compare the predicted pixel colors to the original ones. Heo
et al. [10] detect motion regions using the global intensity
transfer functions. Zhang and Cham [11] analyze the image
gradient to generate a weighting map. Lee et al. [20] and
Oh et al. [21] use rank minimization to reject moving pixels
and reconstruct the HDR image. However, these methods lose
available pixel information by rejecting or downweighting
pixels and thus struggle to successfully reconstruct the HDR
image.

B. Sophisticated Alignment Based Methods

These approaches perform more detailed alignment to find
correspondence among the LDR images. A number of works
adopted optical flow for sophisticated alignment of LDR
images before merging. In order to deal with the brightness
constancy assumption of optical flow algorithms, Kang et al.
[19] use a hierarchical homography and optical flow after
mapping the images to the luminance domain. Zimmer et
al. [18] compute optical flow in the gradient domain. These
flow-based approaches often generate undesirable artifacts.
Meanwhile, Sen et al. [22] and Hu et al. [23] rely on
patch-based dense correspondence. Hu et al. [23] propose
a patch-based method to synthesize a set of aligned images
and reconstruct an HDR image using intensity and gradient
information. Sen et al. [22] do not separate alignment and
reconstruction but rather formulate them as a joint problem,
and let the information from the merging stage help with the
alignment stage. These approaches, however, are slow and
often fail when large motion or large under/overexposed region
exists.

C. Deep Learning Based Methods

Recently, several deep learning based methods have been
developed. Kalantari et al. [17] first align the input images
using the optical flow algorithm [15] and pass them to the
merging stage implemented with CNN. Wu et al. [6] perform
homography transformation on the input images for back-
ground alignment and train an image translation network to
learn a mapping from the registered LDR images to a ghost-
free HDR image. However, even these approaches still suffer
from non-negligible artifacts and missing details and require an
additional pre-alignment process. To alleviate these problems,
we present an end-to-end trainable kernel prediction network.
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Fig. 2: Our framework for HDR imaging is composed of the kernel prediction network (KPN) and the merging network. The
KPN generates per-pixel kernels for alignment, and the merging network merges the aligned images into an HDR image. The
final HDR image is visualized after tonemapping.

III. PROPOSED METHOD

Given a series of LDR images {I1, . . . , Ik} sorted by their
exposure time, our goal is to generate a ghost-free HDR
image H that is aligned to the pre-defined reference image
Ir, r ∈ {1, . . . , k}. In our experiments, we use three LDR
images {I1, I2, I3} and set the middle exposure image I2 as
the reference image Ir, but our method can be applied to more
input images.

Before feeding the LDR images into the network, we map
them to {H1, H2, H3} in the HDR domain using gamma
correction:

Hi =
Iγi
ti
, γ > 1, (1)

where ti denotes the exposure time of the ith image Ii and
γ denotes the gamma correction parameter. The LDR images
help to identify the under/overexposed regions, while the HDR
images facilitate detection of misalignments. Since the LDR
and HDR images have different properties, we treat them as
independent images, unlike the previous works [6], [17]. We
now denote the six input images as {X1, X2, X3, X4, X5, X6}
instead of {I1, H1, I2, H2, I3, H3}. We then represent our
HDR imaging process as:

H = f(X1, X2, X3, X4, X5, X6), (2)

where f(·) denotes our network. Our end-to-end network
outputs the HDR image H , given the six input images without
any additional process.

A. Overall Architecture

Unlike the previous CNN-based approaches [6], [17] that
directly obtain an HDR image, the proposed framework pro-
duces and applies kernels to each input image and then merges
the aligned images in the form of weighted averaging. As
shown in Fig. 2, our model consists of two components: the

kernel prediction network (KPN) for alignment and the merg-
ing network for reconstruction of an HDR image. The KPN
generates a distinct kernel for each pixel in each input image.
This per-pixel kernel is then applied to the corresponding pixel
and its neighborhood, and decides how much to reflect their
contents for precise alignment. The merging network then
simply estimates weights for weighted averaging of the aligned
images and reconstructs a final HDR image.

Kernel prediction network (KPN) The KPN is an encoder-
decoder architecture with skip connections resembling the net-
work in [24] which predicts kernels to jointly align and denoise
bursts of images. The input images Xi, i = 1, 2, . . . , N are
concatenated along the channel dimension and then fed into
the network. The last feature map of the KPN has the same size
as the input images and 3K2N dimensions. This feature map
is reshaped to generate N K ×K × 3 kernels at each pixel.
Then the per-pixel kernels are applied to the input images
through the dot product. The pixel value at pixel p in the ith

resulting image Yi can be represented as:

Y pi = 〈Kp
i , N

p(Xi)〉, (3)

where Kp
i denotes the corresponding kernel and Np(Xi)

denotes the K × K neighborhood around the pixel p in the
image Xi. In our experiments, we set N as 6 and K as 5. The
generated kernels extract rich contents in well-exposed regions
from the corresponding images, while suppressing the contents
in saturated or misaligned regions. As a result, we obtain the
aligned images Yi, i = 1, 2, . . . , N , which are passed to the
merging network.

Merging network This subnetwork takes the aligned im-
ages Yi, i = 1, 2, . . . , N as input and performs channel-
wise concatenation. The merging network then computes a
weighted average of them. The architecture is a simple CNN
that is composed of four convolutional layers with decreasing
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kernel sizes similar to the model in [17]. Typical merging
algorithms for HDR imaging compute a weighted average of
only aligned HDR images, but here we use both aligned LDR
and HDR images Yi, i = 1, 2, . . . , N to generate the final
HDR image:

Ĥ(p) =

∑N
j=1 αj(p)Yj(p)∑N

j=1 αj(p)
, (4)

where αj(p) denotes the weight. While the weight αj(p) is
calculated from the input images using various algorithms
[4], [25] in the previous works, our merging network learns
to find the optimal weight αj(p). The output of the last
convolutional layer is reshaped into N weight maps with the
same shape as the input images. We obtain the final HDR
image by computing a weighted average of the aligned images
Yi, i = 1, 2, . . . , N using the generated weight maps.

B. Loss Function

Since HDR images are mostly displayed after tonemapping,
we compute the loss function on the tonemapped HDR images.
We use µ-law as our tonemapping function, as it is differen-
tiable and thus suitable for training the network. The µ-law
function is defined as:

T (H) =
log(1 + µH)

log(1 + µ)
, (5)

where µ is a parameter that defines the level of compression,
H is the HDR image in HDR domain, and T (H) is the
tonemapped image. In this work, H is always in the range
[0, 1] and µ is 5000. We train the network by minimizing the
squared `2 distance between the tonemapped estimated and
ground truth HDR images. Our loss function is defined as:

L =
∥∥∥T (Ĥ)− T (H)

∥∥∥2
2
, (6)

where Ĥ and H denote the estimated and ground truth HDR
images, respectively.

C. Implementation Details

In the KPN, we use 3×3 kernels with a stride of 1 in all the
convolutional layers, which are followed by ReLU activations.
In the merging network, we use four convolutional layers with
decreasing kernel sizes from 7 to 1. The first three layers are
followed by ReLU activations and the last layer is followed
by a sigmoid activation.

IV. EXPERIMENTS

A. Experimental Settings

Datasets We use the dataset provided by [17] for both
training and testing. This dataset consists of 74 scenes for
training and 15 scenes for testing with ground truth images.
For each scene, there are three LDR images with exposure
biases of {−2.0, 0.0, +2.0} or {−3.0, 0.0, +3.0}.

Evaluation Metrics For the quantitative evaluation, we use
five evaluation metrics. We compute the PSNR and SSIM
values between the tonemapped estimated and ground truth

Sen [22] Hu [23] Kalantari [17] Wu [6] Ours GT

(a) Example with large foreground motions and saturation

Sen [22] Hu [23] Kalantari [17] Wu [6] Ours GT

(b) Example with moving objects and under/overexposure

Fig. 3: A qualitative evaluation of our method on images in
challenging cases. In both (a) and (b), the top half part shows
the input LDR images with different exposures, our result after
tonemapping, and the areas with large foreground motions
(from left to right). The bottom half part compares the result
produced by our method and other state-of-the-art methods.

HDR images (PSNR-T and SSIM-T), and the PSNR and SSIM
values between the estimated and ground truth HDR images
before tonemapping (PSNR-L and SSIM-L). We also compute
the HDR-VDP-2 score [26] that measures the visual quality
of HDR images.

B. Experimental Results

We perform both quantitative and qualitative evaluations
on the proposed method. We also compare our results with
previous state-of-the-art methods, including two patch-based
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TABLE I: Quantitative comparisons of our method with other
state-of-the-art methods. PSNR-T/SSIM-T is calculated on the
tonemapped images and PSNR-L/SSIM-L is calculated on the
linear images. HDR-VDP-2 scores evaluate the visual quality
of HDR images.

PSNR-T SSIM-T PSNR-L SSIM-L HDR-VDP-2

Sen [22] 41.11 0.9815 38.82 0.9749 57.43
Hu [23] 34.87 0.9698 31.72 0.9511 55.20
Kalantari [17] 42.70 0.9879 41.21 0.9845 59.68
Wu [6] 41.73 0.9854 41.42 0.9847 61.30
Ours 42.42 0.9920 38.60 0.9850 66.20

methods [22], [23], the method using optical flow based
alignment and a DNN-based merger [17], and the DNN-based
method with homography transform based pre-alignment [6].
Note that we used the codes provided by the authors for all
methods.

Quantitative Evaluations We compute five aforementioned
evaluation metrics and compare with the other methods. Ta-
ble I shows quantitative comparison of the proposed method
with other methods. The proposed method achieves the best
performance in terms of SSIM-T, SSIM-L, and HDR-VDP-
2, and produces comparable PSNR-T. Especially, our method
achieves significantly higher HDR-VDP-2 scores than other
methods, which shows our method can generate a high-quality
HDR image.

Qualitative Evaluations We compare our qualitative results
with state-of-the-art methods. The results are shown in Fig. 3.
The test images contain moving objects, global misalignment
and under/overexposed regions. Sen et al.’s method [22]
sometimes produces geometric distortions and artifacts. Hu
et al.’s method [23] often fails to reconstruct the HDR image.
Kalantari et al.’s method [17] generates artifacts mainly due to
the failure of optical flow based alignment. Wu et al.’s method
[6] produces blurry regions and cannot hallucinate plausible
details. Fig. 3 (b) shows that all the results except ours fail to
reconstruct the details or texture successfully in the presence of
occlusion, saturation, and underexposure. The overall results
demonstrate the capability of our method to generate detail-
preserving HDR results without apparent artifacts.

V. CONCLUSION

In this paper, we have presented an end-to-end framework
for HDR imaging of dynamic scenes. We have proposed
the kernel prediction network to fully utilize every pixel
in input images and demonstrated the proposed method’s
superior ability to generate high-quality HDR images without
additional preprocessing. We have successfully handled the
ghosting or blurring artifacts and preserved fine details even
in the presence of severe under/overexposure, displacement,
and occlusion.
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