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Abstract—Vulnerabilities of the Automatic Speaker Verifica-
tion (ASV) technology have been recognized and have generated
much interest to design anti-spoofing detectors. Replay attacks
pose a severe threat due to the relative difficulty for detection
and the ease in mounting spoofing attacks. In this paper, a high
performing spoofing detection countermeasure is presented. Deep
Learning (DL) based speech embedding extractors and a novel
data augmentation approach are combined to improve the detec-
tion performance. To select augmented samples with high quality
and diversity and avoid the bias caused by human subjective
perception, we propose the use of a Support Vector Machine
(SVM) based post-filter. With the generated extra informative
training data, problems of over-fitting and lack of generalization
can be significantly alleviated. Experimental results measured by
equal error rates (EERs) indicate a relative improvement of 30%
on the development and evaluation subsets. This provides the
motivation for the proposed audio data augmentation and also
promotes the future research on generated samples selection in
the application of speaker spoofing detection.

I. INTRODUCTION

The Automatic Speaker Verification (ASV) system has been
widely embedded in consumer electronics and security check
scenarios as a reliable solution to person authentication [1].
Recently, the ASV technology itself is encountering intractable
security problems in regards to spoofed speech attacks [2].
Among all the spoofing approaches, replay attacks can be
performed with accessible devices like mobile phones and this
ease poses a significant threat to ASV systems [3]. Due to
the success of deep learning (DL) technology in classification
and recognition tasks, it is a powerful motivation to apply
Deep Neural Networks (DNNs) for ASV anti-spoofing tasks
[4]. DL based architectures are usually adopted for detecting
spoofing attacks. In the example works of [5], [6] the best
single system performance was achieved by employing DNNs
to extract speech embeddings for back-end classification tasks.

However, for acoustic models trained by deep learning
based systems, performance degradation is often observed
when the training data are insufficient or imbalanced [7]. With
insufficient training data, the training process will be trapped
with the issue of over-fitting to the seen data, which leads
to a model of lower generalization ability to unseen data [8].
Table I shows the statistics of the ASVspoof 2017 2.0 corpus
[9]. A total of 13306 speech samples were collected in the
evaluation subset, which contains data with a wider range of
variations than present in the training subset. This condition
is not friendly to deep learning based systems, although
the purpose is to encourage research in more generalized
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TABLE I
STATISTICS OF THE ASVSPOOF 2017 VERSION 2.0 DATABASE

Subset # Spk #i el:;ci[())ll?z #Clii[;ilgy # Utterances
Bona fide  Replay
Training 10 6 3 1507 1507
Dev. 8 10 10 760 950
Eval. 24 161 57 1298 12008
Total 42 177 61 3565 14465

countermeasures. Integrating audio augmentation with speaker
anti-spoofing systems is still an under-explored direction in
the community. In addition, it is also not clear whether every
data point generated would have equal impact in classifier
performance [10]. For replay spoofing detection the unknown
variations in the quality of the replay attack recording and
playback make it more difficult to determine this [3]. As
a consequence there is a pressing need for a post selection
process to only keep generated data of high quality. A related
work in [11] showed the benefit of the data augmentation
strategy on the first version of the challenge corpus. However,
generated samples were only augmented for the replay subset,
which potentially causes an imbalanced training subset.

In this paper, we propose a replay detection countermeasure
based on data augmentation and post selection. The whole
training subset of the ASVspoof 2017 Version 2.0 corpus is
used to generate more speech samples with preserved labels.
Moreover, an SVM based post selection process [10], [12] is
applied to select generated samples. The contributions of this
work are threefold. Firstly, this work proposes a solution to the
more challenging problem of data augmentation of both the
Bona fide and replay data for speaker anti-spoofing. Then, for
the first time, the state-of-the-art SVM based post selection
process is combined with traditional data augmentation ap-
proaches to select generated speech samples of high quality.
Consequently, by integrating the proposed countermeasure, the
performance of two efficient deep learning based spoofing
detection benchmark systems are significantly improved. Ex-
perimental results confirm the advantage of data augmentation
and post selection.

The rest of the paper is organized as follows. The detailed
concepts and the proposed framework are introduced in section
II. In section III, the experimental results and relevant discus-
sion are given. Finally, a conclusion of this paper is detailed
in section IV.
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Fig. 1. Block diagram of the replay anti-spoofing countermeasure proposed in this work. The system in red dashed box is the CQT-LCNN-GMM system [5]

and the one in blue dashed box is the CQCC-DNN-SVM system [6].

II. DATA AUGMENTATION AND SVM POST SELECTION

A. Data augmentation

In this work, we apply the time-frequency representation
(TFR) of the constant Q transformation (CQT) and the Con-
stant Q cepstral coefficient (CQCC) as acoustic features. CQT
based TFRs and CQCCs give a higher frequency resolution
for lower frequencies and a higher temporal resolution for
higher frequencies [13]. These constant Q transformation
based features have been widely adopted to detect spoofing
attacks and have demonstrated excellent accuracy over other
traditional acoustic features based approaches such as the Mel-
frequency cepstral coefficients (MFCCs) [14], [15].

The scheme of the data augmentation process is shown
as a part of the entire countermeasurc as in Fig.1. Several
audio augmentation methods are used to generate new speech
samples. In the simplest cases, the original audio files are
loaded into the computer and transformed with straightforward
variations such as shifting and stretching. The ratio param-
eters of stretching are set to 1.2 and 0.8, which provides
extensional and compressed speech signals. For the shifting
transformation, the number of the sampling points shifted are
set randomly to maximize the diversity of produced speech
files. Transformed audio files are sifted and assembled with
the original training subset to build the augmented training
dataset.

Another straightforward but effective way for audio data
augmentation is the vocal tract length perturbation (VTLP),
which is derived from the vocal tract length normalization
(VTLN) [16]. For VTLP, a random warp factor « ranging
between 0.9 and 1.1 is selected for each utterance. Then the
frequency axis of this utterance is warped such that a frequency
f is mapped to a new frequency f’ using the following
approach:

f < Fh_min(a,l)
= Y2 o
otherwise

/! o S/2— F; min(a.1)
= — F},; min(a,1

S/2 — W(S/Q—f)
where S denotes the sampling frequency and F}; is a boundary
frequency chosen to cover the formant regions of interest. In
this work, the sampling frequency is 16kHz and the F},; is set

to 4800.

B. SVM post selection

An SVM based post-filter is applied in this work to sift
away generated samples with low impact for the training
process. The generated samples with the same class label are
collected together as the generation pool, which is a mixture of
various audio files. However, not all of the generated samples
are highly correlative with the original ones. To solve this
problem of sample selection after data augmentation, a sifting
process was introduced and achieved promising results in the
application of acoustic scene classification [10]. We employ
the similar SVM based iterative sifting process to refine the
augmented samples and the process is depicted in Fig.2.
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Fig. 2. Flowchart of the SVM based sifting process.
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The generated samples for each class, i.e. Bona fide and
replay, are organized to build two generation pools. Note that
only half of the original training data (namely tr_A) is used
for training the SVM hyper-plane while the other half (namely
tr_B) is kept for validating. An SVM hyper-plane for each
class is derived from the tr_A as a baseline performance. The
trained hyper-plane is applied on relevant generated samples
and the classification performance of the SVM is measured by
the sum of the training and validation set accuracy (namely
acc_tr_A and acc_tr_B). The measurement equation is given
as below:

SVM_score = acc_tr_A + 6 -acc_tr_B )

where a linear weighting factor 6 is added to the validation
set score considering the iterative update.

We take the spoof class as an example to describe the
detailed processing steps of the SVM based post-filter. The
main steps are the same as in [10] except that adding random
perturbations on the generated samples is removed to make
the sifting system applicable for samples produced by the
augmentation approaches in this work. The generated spoofed
speech pool is randomly subsampled. The distances between
these samples and the SVM hyper-plane trained from the tr_A
set are calculated. After sorting the subsampled generated
spoofed speech by the distance order, only a preset number of
the nearest ones are retained. We then merge these preserved
spoof samples with the original samples from the tr_A set
and use this merged set to train a new SVM hyper-plane.
The classification performance of the new SVM is obtained
by equation (1). The weighting factor 6 is set to 1.5 as
suggested in [10]. If the accuracy score of the new SVM
outperforms the previous SVM score, the previous SVM
hyper-plane is replaced with the new one and this iteration
continues again with re-subsampled generated spoofed speech.
All the steps of subsampling, sorting, selecting, merging and
performance checking are repeated until the sifting process is
completed. The associated support vectors of spoofed speech
are employed for the augmented dataset once the SVM cannot
be optimized anymore. The whole process is repeated with the
tr_B as the training set for SVM and the tr_A as the validation
set. As well as the spoof class, the entire process is repeated
for the Bona fide class.

The statistics of the augmented training subset after the
SVM based post selection is shown in Table II. The first two
rows are the original and a partial segment of the training
subset. This segment is called Mini_T. and is built by randomly
selecting speech samples from the original training subset. The
Mini_T. is used to investigate the impact of data quantity on
the model training. The next four rows give the amount of the
generated samples by different audio augmentation methods.
Considering the balance between the original data and the
augmented data, we limit the number of augmented samples
to 1200 for each class by tuning the parameters of the SVM
post selection process. The size of the final augmented training
subset is provided in the last row, which is an assembly of the
Ori_T. and four augmentation subsets.
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TABLE I
STATISTICS OF THE AUGMENTED TRAINING SUBSET

# Utterances

Subsets
Bona fide  Replay

Ori_T. 1507 1507
Mini_T. 380 380
Shift 1200 1200
Stretch(0.8) 1200 1200
Stretch(1.2) 1200 1200
VTLP 1200 1200
Aug_T. 6307 6307

C. Replay spoofing detection framework

The block diagram of two replay detection systems is
given in Fig.1. These high performing benchmark systems
are based on deep learning architectures to obtain speech
embeddings. The features extracted are all derived from the
CQT transformation, as used in the baseline system of the
challenge [3]. With the CQT-LCNN-GMM system [5] when
the augmented training subset is ready, the constant Q transfor-
mation is adopted to extract the time-frequency representation.
A light CNN (LCNN) is used to gain the embeddings from the
CQT spectral features and a Gaussian Mixture Model (GMM)
classifier is adopted as the back-end.

On the other hand, with the CQCC-DNN-SVM system
[6] the CQCC features are extracted by applying a uniform
resampling on the logarithmic power spectrum of the CQT
spectrograms. A DNN based architecture is built to extract
high level representations from the CQCC features and an
SVM based classifier is used as the back-end. The output of
these two classifiers is classification as the speech as either
Bona fide or replay.

III. EXPERIMENTAL RESULTS
A. Experiments settings

The CQT spectral features and CQCC features are extracted
by an open-source MATLAB toolkit'. The maximum and the
minimum frequency in the constant Q transform are set as
Frax = Fsample/2 and Fuin = Frax /22 respectively. The
Nyquist frequency of the database is Fyqmpie = 16kHz. The
number of octaves is 9 and the number of bins per octave B is
set to 96, which results in a time shift of 8 ms. The parameter
vissettoy =1 = 228.7x (2(1/3) — 2(’1/3)). In the process
of CQCC features extraction, the resampling period is d = 16.
By truncating the spectrum along the time axis with a fixed
size of 863 x 400, CQT spectral features with unified time-
frequency shape are obtained. The dimension of the CQCC
static coefficients is set to 20 and appended with their first
and second derivatives.

The architecture of the LCNN consists of 5 convolution
layers, 4 Network in Network layers, 10 Max-Feature-Map
layers, 4 max-pooling layers and 2 fully connected layers.
The network of the DNN contains 3 convolution layers, 1
max-pooling layer and 3 fully connected layers. More detailed

Thttp://audio.eurecom.fr/content/software
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settings for LCNN and DNN networks can be found in [5], [6].
The GMM back-end classifier utilizes 512-component models
which are trained using the EM algorithm, on Bona fide and
replay speech, respectively. The SVM back-end classifier is
trained using a linear kernel to discriminate two classes.

All the scores from classifiers are represented by the Log-
likelihood ratio (LLR). The EER is defined as the operating
point on the Detection error tradeoff (DET) curve, where the
false acceptance rate (FAR) is equal to the false rejection
rate (FRR). A lower EER(%) indicates a better detection
performance.

B. Results and analysis

To assess the proposed detection method, we compare with
two benchmark anti-spoofing systems including the CQT-
LCNN-GMM system [5] and the CQCC-DNN-SVM system
[6]. The results are demonstrated as in Table III. The baseline
CQCC-GMM system released in the ASVspoof 2017 chal-
lenge [3] is also presented. Over both the Dev. and Eval.
subsets, the two deep learning based systems can outperform
the baseline with decreased EERs. A serious degradation of
detection performance can be seen when the systems are
trained with the Mini_T.. This is a further evidence to confirm
the importance of augmented data when using deep learning
systems.

TABLE III
THE EERS(%) OF THE DL BASED SYSTEMS.

Systems Subsets EER%
Dev. Eval.
CQCC-GMM(baseline) ~ Ori_T. 1146 29.71
CQT-LCNN-GMM Mini_T. 18.56  27.37
Ori_T. 1537 2035
Aug_T.(no sifting) 10.25 14.88
Aug_T.(with sifting)  8.02  12.14
CQCC-DNN-SVM Mini_T. 1743 26.11
Ori_T. 690  16.57
Aug_T.(no sifting) 6.30 15.62
Aug_T.(with sifting)  4.80  11.30

To investigate whether the SVM based post-filter can con-
tribute to a lower EER performance we included both data
augmentation without sifting and with our novel use of SVM
based sifting. From Table III it is evident that when the
post-filter is integrated the detection performance can be
significantly improved. The best performance is obtained with
the CQCC-DNN-SVM system, which gets very good results
with EERs of 4.80% and 11.30% on the development and
evaluation sets, respectively. These promising results indicate
the significance of and verify the effectiveness of the post
selection process when using data augmentation. With suf-
ficient training data of informative variants generated using
data augmentation with our proposed use of post sclection,
the detection performance can be improved when using deep
learning systems for spoofing detection.
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IV. CONCLUSIONS

In this paper, a replay anti-spoofing countermeasure based
on data augmentation and features post selection was pro-
posed. A novel audio augmentation method was adopted to
generate speech samples. An SVM based post-filter was ap-
plied for sifting out samples with low relevance and diversity.
With the expanded training subset, the issues of over-fitting
and deficient generalization were alleviated. The effectiveness
of the post selection process was revealed and confirmed for
spoofing detection. Anti-spoofing systems were assessed on
the ASVspoof 2017 Version 2.0 corpus and promising results
were achieved on the development and evaluation subsets.
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