
Deep Neural Network Compression with
Knowledge Distillation Using Cross-Layer Matrix,

KL Divergence and Offline Ensemble
Hsing-Hung Chou∗ and Ching-Te Chiu∗† and Yi-Ping Liao†

∗ Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan
† Institute of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Abstract— Knowledge Distillation is one approach in Deep
Neural Networks (DNN) to compress huge parameters and high
level of computation associated with a teacher model to a smaller
student model. Therefore, the smaller model can be deployed
in embedded systems. Most of Knowledge Distillations transfer
information at the last stage of the DNN model. We propose an
efficient compression method that can be split into three parts.
First, we propose a cross-layer Gramian matrix to extract more
features from the teacher’s model. Second, we adopt Kullback
Leibler (KL) Divergence in an offline deep mutual learning
(DML) environment to make the student model find a wider
robust minimum. Finally, we propose the use of offline ensemble
pre-trained teachers to teach a student model. With ResNet-32
as the teacher’s model and ResNet-8 as the student’s model,
experimental results showed that Top-1 accuracy increased by
4.38% with a 6.11x compression rate and 5.27x computation
rate.

Index Terms—Deep Convolutional Model Compression,
Knowledge Distillation, Transfer Learning

I. INTRODUCTION

Recently, deep learning is becoming a mainstream
technology owing to the availability of high computation
GPGPU and the ability to process massive data. Many state-
of-the-art performances have been achieved with deep learning
computer vision workloads like image classification[1], object
detection[2], and semantic segmentation[3]. However, when
neural networks get deeper and wider, the computation of deep
neural network (DNN) models become more expensive. There
are five approaches to achieve a compact yet accurate model:
frugal architecture, pruning, matrix decomposition, quantiza-
tion, and specialist knowledge distillation (KD). Knowledge
distillation is a concept that a large DNN trained for a given
task teaches shallower student neural network (S-DNN) on the
same task.

We combine three ways of deep neural network
compression with knowledge distillation. The first method is
Gramian matrix. Gatys et al. [4] represent texture information
of the input image with Gramian matrix since Gramian matrix
is composed by computing the inner product of features
vectors. We use Gramian matrix crossing one to three layers
and combine them into one. Second method is KL divergence.
We approach the probability distribution of the T-DNN by
training S-DNN. Lastly, there are originally two branches of

Knowledge distillation approaches. One is the conventional
approach, referred to as offline methods[5][6][7][8][9][10],
which training the teacher neural network (T-DNN) first, then
use the S-DNN to mimic the pre-trained T-DNN. Although
this two-phase approach incurs considerable computation
time, we get a better performing S-DNN. Sometimes, this
S-DNN is better performing than the pre-trained T-DNN,
because the T-DNN is already pre-trained and has more
layers than the S-DNN, while the S-DNN has a better initial
weight. The other approach is referred to as online methods
[11][12][13], which start both as scratch models that train
together. This one-phase approach expects to train a better
model than when only training the S-DNN model. Compared
with the offline methods, these online methods do not need to
train a T-DNN first, so there is less training time. We adopt
the offline approach as our last method.

II. PROPOSED ARCHITECTURE

The core idea of knowledge distillation is how to define
the vital information, then transfer the knowledge from the
T-DNN to the S-DNN. The overall architecture for our three
proposed compression methods are shown in Fig. 1. First, we
propose cross-layer Gramian matrix to extract more features
by the flow of solution procedure (FSP) method in the yellow
part. Second, we adopt the KL Divergence in the offline
environment to make S-DNN find a wider robust minimum in
the brown part. Finally, we propose the use of offline ensemble
pre-trained T-DNN to teach a S-DNN by using stochastic mean
in the red part. The details are shown as follows.

A. Cross-Layer Matrix

1) Proposed Distilled Knowledge:
Yim et al [5] proposed ”FSP” by using Gramian matrix

to mimic the generated features of the T-DNN, which can be a
hard constraint for the S-DNN. We propose to let teacher and
student produce Gramian matrix respectively. Then use KD
Loss to compute their losses in order to decrease their losses’
difference. However, the features crossing different layers
are not utilized, so we generate more Gramian matrices by
crossing more than one layer. The number of cross matrices
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Figure 1: Overall architecture of our proposed methods.

we add as loss function depend on how many layer modules
are in DNN model. With more Gramian matrices in loss
function, it would make the S-DNN get better performance.
Fig. 2(a)(b)(c) show the different crossing schemes of passing
features from different layer modules. Our proposed method
is to combine the Gramian matrices crossing one layer, two
layers, and three layers as shown in Fig. 2(d) as knowledge.

Based on FSP [5], the Gramian matrix can be defined by
two output feature maps. We propose the Gramian matrix as
the knowledge to transfer. The Gramian matrix G ∈ Rm×n is
generated by the features from two layers. One output feature
map is defined as F 1 ∈ Rh×w×m, where h, w, represents the
height and width of output feature maps and m represents the
number of output channels. The other output feature map is
defined as F 2 ∈ Rh×w×n. Then, the Gramian matrix G ∈
Rm×n is calculated by (1)

Gi,j(x;W ) =

h∑
s=1

w∑
t=1

F 1
s,t,i(x;W )× F 2

s,t,j(x;W )

h× w
(1)

where s, t represent the index of the height and width of
output feature maps, i, j represent the points of cross-one-layer
results, x represent the input image and W the weights of the
network model. Unlike FSP [5], we select several points not
only from cross-one module layer but also from cross-more-
than-one module layer to generate more Gramian matrices as
shown (2) and (3).

Gi,q(x;W ) =

h∑
s=1

w∑
t=1

F 1
s,t,i(x;W )× F 2

s,t,q(x;W )

h× w
(2)

Gi,r(x;W ) =

h∑
s=1

w∑
t=1

F 1
s,t,i(x;W )× F 2

s,t,r(x;W )

h× w
(3)

where i, q represent the points of cross-two-layer results as
shown in Fig. 2(b) and i, r represent the points of cross-three-
layer results as shown in Fig. 2(c).

2) KD Loss for The Gramian Matrix:
As discussed previously, the T-DNN will teach S-

DNN the solution of question by using the Gramian ma-
trix. We assume that there are B Gramian teacher matrices
GT

b , b = 1, ..., B, which are generated by the T-DNN, and

Figure 2: (a) Cross one layer. (b) Cross two layers. (c) Cross
three layers. (d) Our proposed.

B Gramian student matrices GS
b , b = 1, ..., B, which are

generated by the S-DNN. The B Gramian matrices includes
cross-one-layer, cross-two-layer and cross-three-layer Gramian
matrices defined in Eq. (1)(2)(3). Next, each pair of Gramian
matrices will be calculated as the cost function by using the
squared L2-norm. The cost function of knowledge distillation
LKD(Wt;Ws) is defined as (4):

LKD(Wt;Ws)

=
1

B

∑
x

B∑
b=1

λb × ||GT
b (x;Wt)−GS

b (x;Ws)||22
(4)

where λb represents the weight for each KD loss and B
represents the numbers of Gramian matrices. Because our
proposed method adds more Gramian matrices by creating the
cross matrices, we initially set all KD losses with the same
weight, and see if there is any other knowledge we could
extract from more than one layer. As a result, the values of
λb are identical in our experiments.

B. KL Divergence

We propose using Kullback Leibler (KL) Divergence, which
was used in DML [11], as our second-order loss function. In
contrast to the online method[11] with two-direction learning,
our offline method is only used in one direction from T-DNN
to S-DNN. Given D as the data examples X = {xn}Dn=1

from C classes, we represent the corresponding label set as
Y = {yn}Cn=1 . The probability of class C for data example
xn is given by a neural network θ1 and computed as

pC1 (xn) =
exp(zC1 )∑C
c=1 exp(z

c
1)

(5)

where pC1 (xn) represents the probability distribution of θ1 and
the logit zC1 is the output of the ”softmax” layer in θ1. As a
result, the formulation of KL Divergence can be computed as

LKL(pT ||pS) =
D∑

d=1

C∑
c=1

pcT (xd)log
pcT (xd)

pcS(xd)
(6)

where pT and pS are the probability distribution of teacher and
student model respectively. We believe that student model can
get full knowledge from teacher model by having distribution
similar to teacher’s .
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C. Offline Ensemble

The original method of FSP [5] is discussed with one T-
DNN to transfer one S-DNN. Compared with FSP [5], we
propose using offline ensemble pre-trained teachers to generate
the stochastic mean and improve the image classification
result. The cost functions of knowledge distillation and KL
Divergence are defined as

LEnsemble
KD =

1

K

K∑
k=1

LKD,k (7)

LEnsemble
KL =

1

K

K∑
k=1

LKL(pk||pS) (8)

where LEnsemble
KD represents the loss function of offline en-

semble knowledge distillation, LEnsemble
KL represents the loss

function of offline ensemble KL Divergence, K represents the
numbers of pre-trained teacher models (K=3). We believe that
the offline ensemble pre-trained teacher models with the same
architecture, but the different weights will transfer knowledge
to student model by using the stochastic mean.

D. Overall Loss Function

We had already proposed LKD, LKL and stochastic mean
for our method. Hence, the overall loss function Ltotal(θ1) for
training S-DNN is shown as (9)

Ltotal(θ1) = LCE(θ1)+
1

K

K∑
k=1

LKL(pk||ps)+
1

K

K∑
k=1

LKD,k

(9)
with the objective function of multi-class image classification
LCE(θ1) to train the network θ1 is defined as the cross entropy
error between the predicted values and the correct labels:

LCE(θ1) = −
D∑

d=1

C∑
c=1

I(yd, c)log(p
c
1(xd)) (10)

with an indicator function I defined as

I(yd, c) =

{
1, yd = c
0, yd 6= c

(11)

To prevent LKD,k larger than LCE(θ1) from inducing
gradient explosion, we will adopt gradient clipping [14] to
limit the gradient of knowledge distillation∇(θ1)clippedKD during
training procedure as shown in Eq. (12):

∇(θ1)clippedKD =

{
β ×∇(θ1)KD, ∇(θ1)KD < ∇(θ1)CE

∇(θ1)KD, otherwise
(12)

β =
1

1 + exp(−τ + p)
(13)

τ =
||∇(θ1)CE ||2
||∇(θ1)KD||2

(14)

where β is a sigmoid function. In Eq. (13), p means the
current epoch of training. Furthermore, the L2-norm ratios are
the LCE and LKD,k in Eq. (14). Hence, the rich knowledge

distilled from T-DNN can be transferred knowledge S-DNN
without worrying about gradient explosion.

III. EXPERIMENTAL RESULTS

In this section, we will evaluate our proposed compression
method with two datasets and three different models. The
two datasets are the familiar CIFAR-100 [15] and the rich
collection of images, ImageNet64*64 [16]. Additionally, there
are two models, VGG and ResNet, training and testing on
CIFAR-100 and one model named MobileNet, training and
testing on ImageNet64*64 for image classification.

A. Environment and Datasets

Our proposed method is implemented in TensorFlow [17]
with Python 3.5 interference on the computers (CPU: Intelr

CoreTM i7-7800X @ 3.5 GHZ, main memory: 32 GB DRAM,
GPU: NVIDIA GEFORCE r GTX 1080).

The CIFAR-100 dataset consists of 60,000 images with a
size of 32×32, divided as 50,000 training data and 10,000
test data, and 100 classes. We used random shift, random ro-
tation and horizontal flip as data augmentations. Our proposed
method was tested under the same conditions as FSP [5], and
for increasing the dependability of the testing results, we ran
the experiments three times and took the average as the final
experimental results. We take VGG and ResNet as the DNN
to prove that our proposed method works. The T-DNN and
S-DNN models are shown in Fig. 3.

(a) (b)

Figure 3: T-DNN and S-DNN of the VGG and ResNet
models. T-DNN: VGG-11 and ResNet-32. S-DNN: VGG-6
and ResNet-8.

The ImageNet64*64 dataset consists of about 1.2 million
images with a size of 64×64, divided with about 1.2 million
training data and 50,000 test data, and 1000 classes. We used
the same data augmentations as same with CIFAR-100 and the
experiments were run three times and took the average as the
final result. On ImageNet64*64, we defined MobileNet-16 as
T-DNN and MobileNet-9 as S-DNN as shown in Fig. 4. We
only considered MobileNet due to hardware limitation. This
heuristic method needs more memory space due to our third
proposed method “Offline Ensemble”, the computer will face
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a memory overflow with bigger models. As a result, we pick
the smaller model MobileNet for ImageNet dataset to have a
faster experiment to prove that our heuristic method had better
Top1-accuracy than competitors.

Figure 4: T-DNN and S-DNN of the MobileNet models. T-
DNN: MobileNet-16. S-DNN: MobileNet-9.

On CIFAR-100, the training procedure for networks was
considered by FSP [5] and SSKD SVD [9]. We set the batch
size to 128 and the training epochs to 200 during training,
optimized the procedure by stochastic gradient descent (SGD)
[18], and adopted Nesterov accelerated gradient [19]. The
initial learning rate was set to 10−2 and the momentum was
set to 0.9. The decay parameter was set to 10−4. The learning
rate was reduced to 0.1 per 50 epochs. Additionally, we set
the batch size to 64 during training, training epochs to 40,
and the learning rate was reduced to 0.1 per 10 epochs for
ImageNet64*64.

B. Comparison with Other Work

With the same compression on S-DNN, it can be seen
that our proposed method got the state-of-the-art results on
VGG and ResNet models compared with the competitors
[6][5][9][10]. Yim et al. [5] exploited flow between layers
computed as the inner product of feature maps between layers.
Another method for training small networks is distillation [6]
which uses a larger network to teach a smaller network. In
[9], authors improve [5] with Singular Value Decomposition
(SVD). For Feature Knowledge Distillation (FKD) on [10],
authors propose distance-wise and angle-wise distillation, pe-
nalizing structural differences in relations. As we can see
in Table I, the result of our proposed method achieves a
66.67% Top-1 accuracy with a 2.08x compression rate and
3.5x computation rate. Additionally, the result of our proposed
method achieves a 68.45% Top-1 accuracy with a 6.11x
compression rate and 5.27x computation rate as shown in
Table II. Furthermore, we can see in Table III that the result
of our proposed method achieves a 49.86% Top-1 accuracy
with a 1.59x compression rate and 2.05x computation rate.
Compared to other methods, our proposed method has better
performance Top-1 accuracy for all the three different network
models.

Table I: Computation, parameters, and average Top-1
accuracy comparison with VGG-11 and VGG-6 on

CIFAR-100. T-DNN: VGG-11, S-DNN: VGG-6.

FLOPSs
[M]

Param
[M]

Exp1. Exp2. Exp3. Average

T-DNN 212.8 7.93 66.01% 65.75% 66.54% 66.10%
S-DNN 60.71 3.8 63.06% 62.79% 63.45% 63.10%

Hinton [6] 60.71 3.8 64.89% 64.81% 64.84% 64.84%
FSP [5] 60.71 3.8 64.51% 64.18% 64.53% 64.40%

SSKD SVD [9] 60.71 3.8 66.51% 66.57% 66.50% 66.52%
RKD [10] 60.71 3.8 62.41% 62.38% 62.33% 62.37%

Our Method 60.71 3.8 66.62% 66.60% 66.78% 66.67%

Table II: Computation, parameters, and average Top-1
accuracy comparison with ResNet-32 and ResNet-8 on

CIFAR-100. T-DNN: ResNet-32, S-DNN: ResNet-8.

FLOPSs
[M]

Param
[M]

Exp1. Exp2. Exp3. Average

T-DNN 1101.7 7.4 68.80% 69.43% 68.79% 69.00%
S-DNN 191.79 1.21 64.34% 63.68% 64.20% 64.07%

Hinton [6] 191.79 1.21 67.83% 67.97% 67.72% 67.84%
FSP [5] 191.79 1.21 65.30% 65.48% 65.65% 65.47%

SSKD SVD [9] 191.79 1.21 65.96% 66.32% 66.11% 66.13%
RKD [10] 191.79 1.21 66.84% 66.78% 66.05% 66.55%

Our Method 191.79 1.21 68.53% 68.41% 68.41% 68.45%

Table III: Computation, parameters, and average Top-1
accuracy comparison with MobileNet-16 and MobileNet-9

on ImageNet64*64. T-DNN: MobileNet-16, S-DNN:
MobileNet-9.

FLOPSs
[M]

Param
[M]

Exp1. Exp2. Exp3. Average

T-DNN 117.59 2.97 53.48% 53.33% 53.72% 53.51%
S-DNN 57.32 1.86 45.73% 45.86% 45.89% 45.82%

Hinton [6] 57.32 1.86 49.23% 49.10% 49.12% 49.15%
FSP [5] 57.32 1.86 46.38% 46.15% 45.65% 46.39%

SSKD SVD [9] 57.32 1.86 45.61% 44.91% 44.97% 45.16%
RKD [10] 57.32 1.86 48.98% 48.41% 48.41% 48.79%

Our Method 57.32 1.86 49.90% 49.80% 49.90% 49.86%

IV. CONCLUSION

Deep Neural Networks (DNN) have solved many tasks,
including image classification , object detection, and semantic
segmentation. However, when there are huge parameters and
high level of computation associated with a DNN model, it be-
comes difficult to deploy on mobile devices. In this paper, we
propose a method named Deep Neural Network Compression
with Knowledge Distillation Using Cross-Layer Matrix, KL
Divergence and Offline Ensemble. The experimental results
achieve better accuracies than state-of-art approaches.
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