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Abstract—Designing transform method to identify and exploit
structure in signals on weighted graphs is one of the key
challenges in the area of signal processing on graphs. So we
need to account for the intrinsic geometric structure of the
underlying graph data domain. In this paper we generalize the
windowed fractional Fourier transform to the graph setting.
First we review the windowed fractional Fourier transform and
introduce spectral graph theory. Then we define a fractional
translation operator with interesting property for signals on
graphs. Moreover, we use the operator to define a windowed
graph fractional Fourier transform, and explore the reconstruc-
tion formula. Finally, the Hausdorff-Young inequality established
on this new transform is obtained.

I. INTRODUCTION

Some application areas such as electricity networks, trans-
portation networks, sensor networks in Fig. 1, and social
networks in Fig 2, data sets can naturally be modeled as
scalar functions defined on the vertices of graphs. Furthermore,
weighted graphs can be used to represent the underlying
relations between data locations. As an extremely flexible tool,
weighted graph is very important to approximate the data
domains of a large class of problems.

A new perspective of graph data is to see them as signals.
Graph signal processing mainly includes two basic methods.
(i) Discrete Signal Processing on Graph (DSPG) method: This
method is derived from Algebraic Signal Processing (ASP)
theory. DSPG introduces an adjacency matrix that as a shift
operator in ASP [1]. (ii) Graph Signal Processing (GSP)
method based on graph Laplacian matrix: This method comes
from spectral graph theory [2]. GSP uses graph Laplacian
matrix as the basic building block, studying the eigenvalues
and eigenvectors of graph Laplacian matrix. Then the graph
Laplacian matrix and its eigenbases are used to define the
spectrum of the graph signal. The following research of this
paper is based on the latter method.

The transform methods is one of the fundamental problems
of graph signal processing. Several transform methods have
been studied, including graph Fourier transform (GFT) [2-6],
graph wavelet transform [7-10], fractional Fourier transform

on graphs (GFRFT) [11-13], and graph fractional wavelet
transform [13]. Because of weighted graphs are irregular
structures that lack a shift-invariant notion of translation,
a key component in many signal processing techniques for
data on regular Euclidean spaces. Thus, many of the existing
transforms cannot be directly applied to signals on graphs
in a meaningful manner, and an important challenge is to
design novel localized transform techniques that analyze the
structure of the data domain. In view of the problem, Shuman,
Ricaud and Vandergheynst have been proposed windowed
graph Fourier transform (WGFT) [14,15]. The windowed
graph Fourier transform is obtained by generalizing the clas-
sical windowed Fourier transform to the graph setting. Wang
and Li [11,12] generalized the fractional Fourier transform
(FRFT) to the graph setting. In this paper, we describe a
flexible construction for defining windowed fractional Fourier
transform for data defined on the vertices of a weighted graph,
which is an extended version of windowed graph Fourier
transform [14,15].

The paper is organized as follows. In Section 2, We review
the windowed fractional Fourier transform and spectral graph
theory. In Section 3, we set our notations for weighted graphs
,and define the translation operator in fractional graph domain.
In section 4, we define the windowed graph fractional Fourier
transform (WGFRFT). To make the transform more complete,
we also give the inverse transform. In Section 5, we study
Hausdorff-Young inequality for WGFRFT. The last section
concludes this paper.

II. PRELIMINARIES

A. Windowed fractional Fourier transform
In this section, we first review the Windowed fractional

Fourier transform (WFRFT), which will be needed throughout
the paper.

The FRFT with rotational angle α of f(t) on t ∈ R is
defined as [16,17]

f̂α(ω) = (Fαf)(ω) =

∫
R
f(t)Kα(t, ω)dt, ω ∈ R, (1)
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Fig. 1. Sensor network

where the kernel is shown

Kα(t, ω) =



√
1−i cotα

2π e
i(t2+ω2) cotα

2

×e−itω cscα, α 6= nπ, ∀n ∈ Z,
δ(ω − t), α = 2nπ,

δ(ω + t), α = (2n+ 1)π.

(2)

The corresponding inversion formula is given by [16,17]

f(t) = F−1α [f̂α](t) =

∫
R
f̂α(ω)Kα(t, ω)dω, t ∈ R, (3)

By multiplying the function f ∈ L2(R) with a window
function ψ ∈ L2(R) before taking the FRFT, the WFRFT is
obtained

(Wψf)(u, ξ) =

∫
R
f(t)ψ(t− u)Kα(t, ξ)dt, (4)

Let h(t, u) = f(t)ψ(t− u), then

(Wψf)(u, ξ) =

∫
R
h(t, u)Kα(t, ξ)dt = (Fαh)(ω). (5)

For every function f ∈ L2(R) and u ∈ R, the translation
operator Tu : L2(R)→ L2(R) is defined by

(Tuf)(t) = f(t− u), (6)

Combined with (4) and (5), we know the WFRFT of the
function f is equivalent to the FRFT of the function h, where
h(t, u) = (fTuψ)(t).

B. Spectral graph theory

Until now, we have showed the definition of WFRFT. It
relied on multiplying the signal by a window function to
produce a modified signal, expressing the modified signal in
the fractional Fourier domain. Our method is to define WFRFT
on graphs which depends on generalizing this to graphs, doing
so requires the analogue of the fractional Fourier transform

Fig. 2. Social network

for signals defined on the vertices of a weighted graph. As an
important tool, spectral graph theory is introduced.

We define undirected, connected, weighted graphs G =
{V, E ,W}, where V is a finite set of N vertices, E is a set
of edges and W is a weighted adjacency matrix [14,18]. A
signal f on a graph G is a set of real values associated with
the nodes of V and it is a vector of RN .

f :V → R, (7)
vn 7→ f(n). (8)

and f can also be written as a real-valued vector

f =
[
f(0) f(1) · · · f(N − 1)

]T ∈ RN .

For a weighted graph, the degree of each vertex n, denoted
as d(n), is the sum of the weights of all the edges incident
upon that vertex. We define D as the diagonal degree matrix.
The non-normalized graph Laplacian operator L = D −W .
L is a real symmetric matrix and it has a complete set of
orthonormal eigenvectors. The orthonormal eigenvectors are
denoted by χ` for ` = 0, 1, · · · , N − 1. We have

Lχ` = λ`χ`,

where λ` are the associated real, non-negative Laplacian
eigenvalues and the eigenvalues are ordered as 0 = λ0 <
λ1 ≤ λ2 ≤ · · · ≤ λN−1 = λmax.

For any function f ∈ RN defined on the vertices of G, its
GFT is defined by [7,14,18]

f̂(`) = 〈f, χ`〉 =

N∑
n=1

f(n)χ∗` (n). (9)

The inverse graph Fourier transform (IGFT) is given by

f(n) =

N−1∑
`=0

f̂(`)χ`(n). (10)
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The Parseval relation of the graph Fourier transform is ob-
tained, that is, for any signals f and g defined on the graph
G we have:

〈f, g〉 = 〈f̂ , ĝ〉, (11)

If f = g, then

N∑
n=1

|f(n)|2 = ‖f‖22 = 〈f, f〉 = 〈f̂ , f̂〉 = ‖f̂‖22 =

N−1∑
`=1

|f̂(`)|2.

(12)

Similar to the GFT, the graph fractional Laplacian operator
Lα is defined by Lακ` = k`κ`. where 0 < α ≤ 1, k` = λα`
and κ` = χα` [13].

The GFRFT of any signal f ∈ RN defined on the vertices
V of the graph G is defined by [13]:

f̂α(`) = 〈f, κ`〉 =

N∑
n=1

f(n)κ∗` (n), (13)

The inverse GFRFT is given by

f(n) =

N−1∑
`=0

f̂α(`)κ`(n). (14)

The Parseval relation of the GFRFT is obtained, that is, for
any signals f and g defined on the graph G we have:

〈f, g〉 = 〈f̂α, ĝα〉. (15)

If f = g, then

N∑
n=1

|f(n)|2 = ‖f‖22 = 〈f̂α, f̂α〉 = ‖f̂α‖22 =

N−1∑
`=1

|f̂α(`)|2.

(16)

III. FRACTIONAL TRANSLATION OPERATOR ON GRAPH

For any signal f ∈ RN defined on the graph G and any i ∈
{1, 2, · · · , N}, we can define a fractional translation operator
Tαi : RN → RN

(Tαi f)(n) = (
√
N)α

N−1∑
`=0

f̂α(`)κ∗` (i)κ`(n). (17)

Do GFRFT in (13) to this new operator, we find that it can
simplify to a product about the GFRFT of signal f and the
eigenvector of graph fractional Laplacian operator.

(̂Tαi f)α(`) = ((Tαi f)(n), κ`)

=

N−1∑
n=0

(
√
N)α

N−1∑
`=0

f̂α(`)κ∗` (i)κ`(n)κ∗` (n)

= (
√
N)α

N−1∑
`=0

f̂α(`)κ∗` (i)

(18)

According to the above definition, we find an useful proper-
ty about the bounds of fractional translation operator on graph.

For the convenience of follow-up proof, we give the largest
absolute value of the elements of a given graph fractional
Laplacian eigenvector by

a` = ‖κ`‖∞ = max
i∈{1,2,··· ,N}

|κ`(i)|, (19)

and

bi = max
`∈{0,1,··· ,N−1}

|κ`(i)|, (20)

Note that

M = max
`∈{0,1,··· ,N−1}

{a`} = max
i∈{1,2,··· ,N}

{bi}, (21)

Lemma 1: For any f ∈ RN ,

|f̂α(0)| ≤ ‖Tαi f‖2 ≤ (
√
N)αbi‖f̂α‖2 ≤ (

√
N)αM‖f̂α‖2.

(22)

Proof: In line with (16) and (17), we obtain

‖Tαi f‖22 =

N∑
n=1

(
(
√
N)α

N−1∑
`=0

f̂α(`)κ∗` (i)κ`(n)

)2

= Nα
N−1∑
`=0

N−1∑
`′=0

f̂α(`)f̂α(`′)κ∗` (i)κ
∗
`′(i)

×
N∑
n=1

κ`(n)κ`′(n)

= Nα
N−1∑
`=0

|f̂α(`)|2|κ∗` (i)|2

≤ Nαb2i ‖f̂α‖22.

(23)

By (21) and note that κ0(i) = ( 1√
N

)α, we get the result.

IV. WINDOWED GRAPH FRACTIONAL FOURIER
TRANSFORM

Based on the fractional translation operator on graph, we
can define a windowed graph fractional Fourier transform
(WGFRFT) analogously to (4) and (5) as follows

Wψ,αf(i, l) =

N∑
n=1

(fTαi ψ)(n)κ∗` (n)

=

N∑
n=1

f(n)(
√
N)α

N−1∑
`′=0

ψ̂α(`′)κ∗`′(i)κ`′(n)κ∗` (n).

(24)

Let hi(n) = (fTαi ψ)(n), then

Wψ,αf(i, l) =

N∑
n=1

hi(n)κ∗` (n) = ĥi,α(`). (25)

Let Ψ∗i,`(n) = (
√
N)ακ∗` (n)

∑N−1
`′=0 ψ̂α(`′)κ∗`′(i)κ`′(n), then

Wψ,αf(i, l) = 〈f,Ψi,`〉. (26)

When α = 1, the WGFRFT becomes the WGFT [15], that is,
the WGFRFT is a generalization of WGFT.
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We will show that the inverse formula of the WGFRFT,
it can reconstruct a signal corresponding to a given set of
transform coefficients, which is useful for signal processing
and signal analysis.

Theorem 1: If ψ̂α(0) 6= 0, then for any signal f ∈ RN , we
have

f(n) =
1

Nα‖Tαi ψ‖22

N∑
i=1

N−1∑
`=0

Wψ,αf(i, l)Ψi,`(n) (27)

Proof: By (14) and (25), we have

f(n)(
√
N)α

N−1∑
`′=0

ψ̂α(`′)κ∗`′(i)κ`′(n) =

N−1∑
`=0

Wψ,αf(i, l)κ`(n).

(28)

By multiplying (
√
N)α

∑N
i=1

∑N−1
`′′=0 ψ̂α(`′′)κ`′′(i)κ

∗
`′′(n) on

both sides of (28), we obtain

f(n)(
√
N)α

N−1∑
`′=0

ψ̂α(`′)κ`′(n)(
√
N)α

N−1∑
`′′=0

ψ̂α(`′′)κ∗`′′(n)

×
N∑
i=1

κ∗`′(i)κ`′′(i)

=

N∑
i=1

N−1∑
`=0

Wψ,αf(i, l)(
√
N)ακ`(n)

N−1∑
`′′=0

ψ̂α(`′′)κ`′′(i)κ
∗
`′′(n).

(29)

Hence

Nαf(n)

N−1∑
`′=0

|ψ̂α(`′)|2|κ`′(n)|2 =

N∑
i=1

N−1∑
`=0

Wψ,αf(i, l)Ψi,`(n).

(30)

According to (23), we have

Nα‖Tαi ψ‖22f(n) =

N∑
i=1

N−1∑
`=0

Wψ,αf(i, l)Ψi,`(n) (31)

V. HAUSDORFF-YOUNG INEQUALITIES

Lemma 2: (Riesz-Thorin interpolation theorem) [19]. Let Γ
is a bounded linear operator from `p1 to `p2 ,and from `q1 to
`q2 , there exist constants Dp and Dq such that

‖Γf‖p2 ≤ Dp‖f‖p1 , (32)

and

‖Γf‖q2 ≤ Dq‖f‖q1 . (33)

Then for any t ∈ (0, 1), Γ is also a bounded operator from
`r1 to `r2 :

‖Γf‖r2 ≤ Dr‖f‖r1 , (34)

with
1

r1
=

t

p1
+

1− t
q1

,
1

r2
=

t

p2
+

1− t
q2

, (35)

and

Dr = Dt
pD

1−t
q . (36)

Theorem 2: (Hausdorff-Young inequalities for fractional
translation operator) Let p, q > 0 satisfy 1

p + 1
q = 1. For

any signal f ∈ RN defined on a graph G and 2 ≤ p ≤ ∞, 1 ≤
q ≤ 2, we have

‖Tαi f‖p ≤ (
√
N)αM‖f‖q. (37)

Proof: From Lemma 1, we have ‖Tαi f‖2 ≤
(
√
N)αM‖f‖2. Then, using the proof of Theorem 2 in

[19], we obtain

‖Tαi f‖∞ ≤ (
√
N)αM‖f‖1. (38)

Applying the Riesz-Thorin interpolation theorem with p1 = 2,
p2 = 2, q1 = 1, q2 =∞, Dp = (

√
N)αM , Dq = (

√
N)αM ,

t = 2
q , r1 = q and r2 = p yields the inequality.

In terms of Theorem 2 in [19], we introduce the following
lemma:

Lemma 3: Let p, q > 0 and 1
p + 1

q = 1. For any signal
f ∈ RN defined on a graph G and 1 ≤ p ≤ 2, 2 ≤ q ≤ ∞,
there is

‖f̂α‖q ≤M1− 2
q ‖f‖p. (39)

Theorem 3: (Hausdorff-Young inequalities for WGFRFT)
Let p, q > 0 satisfy 1

p + 1
q = 1, ψ ∈ RN is a window function,

for any signal f ∈ RN defined on a graph G and 1 ≤ p ≤ 2,
2 ≤ q ≤ ∞, we have

‖Wψ,αf(i, l)‖q ≤ (
√
N)αM

2
p ‖f‖p‖ψ‖1. (40)

Proof: Follow from (25) and Lemma 3,

‖Wψ,αf(i, l)‖q = ‖ĥi,α‖q
≤M1− 2

q ‖fTαi ψ‖p

= M1− 2
q

(
N∑
n=1

|(fTαi ψ)(n)|p
) 1
p

= M1− 2
q

(
N∑
n=1

|f(n|p|(Tαi ψ)(n)|p
) 1
p

≤M1− 2
q ‖Tαi ψ‖∞

(
N∑
n=1

|f(n|p
) 1
p

(41)

by (38), we obtain

‖Wψ,αf(i, l)‖q ≤ (
√
N)αM

2
p ‖f‖p‖ψ‖1. (42)
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VI. CONCLUSIONS

In this paper, to multiply a window function to a graph
signal, we define a fractional translation operator on graph and
display related bounds. Matching with the windowed fractional
Fourier transform, we apply this translation operator to design
a new transform named windowed graph fractional Fourier
transform and its inverse transform. Finally, as an interest-
ing property, we present the Hausdorff-Young inequality for
WGFRFT.
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