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Abstract—This paper proposes a new speaker age estimation
method that uses an age-dependent insensitive loss. Most conven-
tional speaker age estimation frameworks ignore the ambiguity
of a perceptual speaker age. These “over-sensitive” frameworks
can cause critical errors far from the actual age. We propose an
age-dependent insensitive loss for speaker age estimation. The
key idea of the proposed method is that the age estimator should
allow some ambiguity of actual age and this ambiguity should
depend on age. The age-dependent insensitivity is learned by ε-
MAE (mean absolute error) loss and soft target cross entropy loss
in regression and classification problems. Experimental results
showed that the proposed method improves the mean absolute
error and the ratio of critical error by 5.2% and 5.7% for the
regression problem and 9.6% and 31.5% for the classification
problem.
Index Terms: speaker age estimation, ε-insensitive loss,
soft target cross-entropy loss, age-dependent insensitive loss,
speaker attribution estimation

I. INTRODUCTION

Speech contains not only text information but also speaker
attribute information such as gender and age. The rapid devel-
opment of novel speech applications is demanding technolo-
gies that can estimate such speaker attribute information. For
example, speaker age estimation could be used to personalize
the advertisements to suit the customer’s age, or prioritize
suspects in forensic cases [1], [2].

The methods that have been proposed to estimate speaker
age fall into two types; group and individual estimation. The
first, group estimation, classifies speaker’s age into several
classes such as child, young, adult and senior [3]–[7]. Though
it is robust in limited training data, it is not practical for
some applications due to the roughness of the estimation.
The other methods estimate the speaker’s age directly by
solving regression or classification problems. The estimation
task is formulated as either the regression [7]–[12] or the
classification problems [13]. Such methods can estimate the
speaker age in detail. However, more training data are needed
to achieve high performance.

Most conventional works defined the actual age as the
ground-truth without any ambiguity. However, it is known that
there is a high ambiguity in age perception from speech [14].
For this problem, some conventional works introduced some
frameworks to allow ambiguity in age labels. For example,
some methods use a soft target that spreads like a Gaussian

distribution centered on the actual age as the actual target for
cross-entropy loss in facial age estimation [15], [16]. Also,
there is a method that reduces the variance of the posterior
probability by the softmax function in facial age estimation
[17]

In this research, we propose an age-dependent insensitive
loss for learning the speaker age estimation model. The age-
dependent insensitive loss regards the estimated error below
a threshold as the correct like the ε-insensitive loss [18].
The threshold is not the constant decided manually but age-
dependent value. Our evaluations showed that the estimation
performances that are mean absolute error (MAE) and the
number of critical error are improved by age-independent
insensitive loss as was adopted in previous works on both
regression and classification problems.

II. SPEAKER AGE ESTIMATION

This section describes two conventional formulations of the
speaker age estimation task; the regression and the classifica-
tion.

A. Regression Task

Generally, speaker age is estimated directly as a type of
regression problem [7]–[12]. The regression task is formulated
as an estimation for the actual age of the speaker y from the
input speech feature x; it is defined as,

ŷ = f(x,Θr), (1)

where ŷ is the estimated age, f(·) is the projection function
such as SVR or neural networks, and Θr is a set of param-
eters of f(·). x is a series of acoustic features or a speech
representation such as speaker embedding vector [7]–[10]. In
conventional works, Θr is optimized by stochastic gradient
descent using MAE or mean squared error (MSE) loss. In this
paper, we use MAE loss LMAE that is defined as,

LMAE = |ŷ − y|. (2)

B. Classification Task

Recently, some methods that estimate age based on face im-
ages or speech as classification problems have been proposed
[15], [19]. In these studies, each age value is treated as one
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Fig. 1. Block diagram of proposed method for speaker age estimation

class. The classification task is formulated as estimation for y
from x; it is defined as,

ŷ =

max(n)∑
yn=min(n)

P (yn|x)yn, (3)

where yn is a specific age value, n is a set of age values;
it is defined as n ∈ (0 · · ·N), N is a maximum value
of age values, and P (yn|x) is the posterior probability for
each age value. Generally, ŷ is estimated based on maximum
posterior probability as ŷ = arg maxP (yn|x) [13], however,
we calculate ŷ as the expected value from P (yn|x) [15], [19].
In conventional works, P (yn|x,Θc) is calculated using the
age estimation model with a set of parameters (Θc), and Θc

is optimized by stochastic gradient descent using cross-entropy
loss LCE; it is defined as,

LCE = −
max(n)∑

yn=min(n)

T (y) log[P (yn|x,Θc)], (4)

where T (y) is the actual target of y. Generally, the 1-hot target
is used as the actual target; it is defined as,

T (y) =

{
1 (yn = y)

0 (otherwise).
(5)

III. AGE-DEPENDENT INSENSITIVE LOSS FOR SPEAKER
AGE ESTIMATION

Most conventional speaker age estimation models were
trained to estimate the ages more accurately. However, we
consider that it is reasonable to assume that the appropriate
variance varies depending on age because of the difference
in the standard deviation (SD) of the acoustic features [14].
In this paper, we proposed that 1) the model regards the
estimation error below a threshold as correct when training
the model, 2) the thresholds are varied according to the actual
age. Figure 1 shows the proposed method.

A. Age-Dependent Insensitive Loss for Regression

For the regression model, we use the ε-MAE loss that treats
the estimation error as being zero if it lies within the threshold

range. The ε-MAE loss (Lε-MAE) is defined as，

Lε-MAE = max(|ŷ − y| − ε, 0), (6)

where ε is the range value of the threshold for regression．
Figure 2 shows the loss value by the conventional and ε-MAE
with ε = 6.

Here, age-dependent ε is calculated by a multilayer percep-
tron (MLP) based on actual age; as shown in below of Figure
1. Age-dependent ε is defined as,

εy = max(fr(y,Ωr) + br, 0), (7)

where fr is the MLP for estimation the age-dependent ε, Ωr

is the parameters of fr(·), and br is the bias. Ωr were trained
simultaneously with the model for speaker age estimation
using Lε-MAE.

B. Age-Depend Insensitive Loss for Classification

For the classification model, we use a soft target cross-
entropy loss that covers the region from the actual age to the
range of the threshold as the actual target. In this paper, we
use the Gaussian distribution for the soft target (T (y)gauss); it
is defined as,

T (y)gauss =
1√
2πσ2

exp

(
− (yn − y)2

2σ2

)
, (8)

where σ is the SD of the Gaussian distribution that means the
range of the threshold. The soft target cross-entropy loss using
T (y)gauss as the actual target (Lsoft-CE) is defined as,

Lsoft-CE = −
max(n)∑

yn=min(n)

T (y)gauss log[P (yn|x)]. (9)

Figure 3 shows the soft target by Equation (8) with the actual
age is 29 and σ = 3.

Here, age-dependent σ is calculated using an MLP based
on actual age; to see below of Figure 1: age-dependent σ is
estimated from actual age using the MLP. Age-dependent σ is
defined as,

σy = max(fc(y,Ωc) + bc, 0), (10)

where fc is the model for estimation of the age-dependent σ,
Ωc is the parameters of Ωc and bc is the bias. Ωc were trained
simultaneously with the model for speaker age estimation
using Lsoft-CE.

IV. SPEAKER AGE ESTIMATION EXPERIMENTS

In order to show the effectiveness of the proposed age-
dependent intransitive loss over the conventional loss, we
conducted speaker age estimation experiment.
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Fig. 3. Soft target for cross-entropy loss (actual age is 29 and σ = 3).

A. Dataset

We used the Fisher Corpus [20] as the training set, NIST
SRE08 [21] as the validation set, and NIST SRE10 [22] as
the evaluation set. Each dataset contains channel-separated
telephone conversations of two speakers quantized at 16 bits
with a sampling frequency of 8 kHz. Figure 4 shows the
number of utterances of each dataset. Table I shows the
number of speakers, the number of utterances and the average
duration of each dataset. In each dataset, some age values
had few speakers. For example, very few speakers were over
60 years old. Accordingly, to avoid model overfitting, we
used utterances whose speakers ranged from 19 to 59 years
old for training and evaluation. That is, n was defined as
n ∈ (19, .20 · · · , 58, 59), and there were 41-class classification
task.

B. Experimental Setup

We created an MLP with two fully-connected layers. The
features were 512-dim x-vectors [23] extracted from 23-
dim Mel frequency cepstral coefficient (MFCC) with 25-
millisecond windows offset by 10-milliseconds. Energy-based
voice activity detection was used to remove non-speech
frames. MFCCs were normalized by short-time mean deter-
mination using a three-second window. The x-vector extractor
was trained using Kaldi’s SRE16 recipe [24] without NIST
SRE10. Each hidden layer had 256 neurons with rectified
linear unit (ReLU) non-linearity as the activation function.
Batch normalization [25] was used before the non-linearity.
The dimension of the output layer was one for the regression
problem, or 41 for the classification problem. In the output
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Fig. 4. The number of utterances of each dataset

layer of the classification problem, the softmax function was
used as the activate function. We used adaptive moment
estimation (Adam) [26] with a learning rate of 0.001, β1 of 0.9,
and β2 of 0.999 to update the model parameters. We decreased
the learning rate by a factor of two when the validation loss
did not improve for two successive epochs. The validation loss
was computed without using insensitive loss. The minimum
learning rate was 1e−05. The training was stopped if the
loss did not improve for three consecutive epochs when the
learning rate was minimum. The mini-batch size was 64. All
hyper-parameters were decided using the loss of the validation
set.

As the baselines, we defined two and three methods for
regression and classification problems, respectively. For the
regression, one was using conventional MAE loss as shown in
Equation 2. Another was using MAE loss by expected value
calculated the posterior probability by the softmax function,
and KL loss of the posterior probability with σ and λ as the
hyper-parameter were 3 and 1.0, respectively [16]. For, the
classification, the first was conventional 1-hot cross-entropy
loss as shown in Equation (4). The second was multi-task
learning of classification and regression problems with λ as
the hyper-parameter was 0.5 [13]. The third was using mean-
variance loss that contains the soft target cross-entropy loss,
the squared error between the expected value and the actual
age, and the variance of the posterior probability with λ1 and
λ2 as the hyper-parameter were 0.3 and 0.1, respectively [17].

The age-independent ε was 6, and the age-independent σ
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TABLE I
DATASET DETAILS

# of speakers # of utterances duration
overall female male overall female male [sec.]

Fisher Corpus [20] 11,320 6,637 4,683 21,252 12,179 9,037 602.7
NIST SRE08 [21] 1,086 686 400 12,017 7,419 4,598 283.8
NIST SRE10 [22] 399 207 192 5,173 2,808 2,365 303.8

was 3. When we use age-dependent ε or σ, the parameters
of the model for estimation the age-depend ε or σ were
learned as well. The age-dependent ε was estimated by fr(·)
that had two fully-connected layers, each of which had 32
neurons with ReLU non-linearity as the activate function. The
age-dependent σ was estimated by fc(·) that had three fully-
connected layers, each of which had 64 neurons with ReLU
non-linearity as the activate function. In each hidden layer,
batch normalization was used before ReLU non-linearity, and
Adam was used to update the parameters as was done in
learning the model for age estimation. The bias for the age-
dependent ε (i.e., br) in Equation 7 was 0 and for the age-
dependent σ (i.e., bc) Equation 10 was 4. The initial learning
rate was 5e−5 and 5e−4 for fr(·) and fc(·), respectively. The
learning rate decreased in the same way as the learning rate
of the model for age estimation. The L2 penalty were 0.1 for
both fr(·) and fc(·). We set the L2 penalty and small learing
rate for training fr(·) and fc(·) to prevent the aget-dependent
ε and σ from diverging to infinity All hyper-parameters were
decided using the accuracy of the validation set.

To evaluate the accuracy, we used MAE, Pearson’s corre-
lation coefficient, and the ratio of outliers. MAE is defined
as,

MAE =
1

N

N∑
i=1

|ŷi − yi|, (11)

where N is the number of samples and i is ID of each sample.
Pearson’s correlation coefficient ρ is defined as follows,

ρ =
1

N − 1

N∑
i=1

(
ŷi −mŷ

sŷ
)(
yi −my

sy
), (12)

where, mŷ and sŷ are the mean and SD of estimated age, and
my and sy are the mean and SD of actual age, respectively.
In addition, we evaluated the ratio of the number of incorrect
age estimates over 10 years old; it is defined as,

outlier -ratio =
number of [|ŷi − yi| ≧ 10]

N
× 100. (13)

We considered that incorrect estimated age over 10 years old
are critical errors in real world applications.

C. Results

Table II and Table III show the results of the regression
and classification problems, respectively. Figure 5 shows the
age-dependent ε and σ when early stopping, respectively. We
used paired t-test for comparing the MAEs and chi-squared
test for comparing the ratio of outliers; the significance level
was 0.05.

In the regression problem, our proposed method improved
the MAE by 3.1% to 5.2 %, and the outlier ratio by 5.7%
to 9.8% then the conventional works. The age-independent
ε loss and [16] yielded significantly lower MAEs than those
achieved with conventional MAE loss. Using age-dependent ε
attained even lower the MAE. The proposed method created
fewer outliers, but the differences were not significant.

With regard to the classification problem, our proposed
method improved the MAE by 2.0% to 12.8%, and the
outlier ration by 9.6% to 31.5% than the conventional works.
The 1-hot target yielded significantly higher MAE than the
other method. Both two previous works yielded significantly
lower MAEs than using the age-independent σ. The age-
dependent σ yielded significantly lower MAE than using
the age-independent σ, however, the differences between the
MAEs of the previous works and using the age-dependent
σ were not significant. The use of the 1-hot target created
significantly more outliers than the proposed methods and
previous works. However, the differences among the proposed
methods and previous works were not significant.

D. Discussions

We hypothesized that there is the appropriate value accord-
ing to the actual age for ε and σ, and proposed a method
for considering the hypothesis. We considered that the exper-
imental results showed that our hypothesis was supported; the
performances were improved than the conventional works or
age-independent insensitive loss.

In the conventional works, the variance of actual age (i.e.,
age-independent σ and ε) was decided manually. However,
there are appropriate variances according to each actual age,
and the previous works could not consider it. Therefore, it is
considered that the performances became poor by the training
with inappropriate variance. We considered that our proposed
method could train the model while considering the appropri-
ate variance for each actual age by estimating age-dependent
ε and σ from the actual age. Our proposed method could train
the model while considering the appropriate variance for each
actual age by estimating age-dependent ε and σ from the actual
age.

The age-dependent ε and σ show same tendency that was
valley type centered on about 35 years old. We consider that
this is due to the estimation difficulty to the training set; there
were the correlation between the SDs of the estimated error
for each actual age and the age-dependent ε (ρ = 0.83) or σ
(ρ = 0.62). Therefore, we believe that the age-dependent ε
and σ were trained correctly. However, there is a possibility
that the age-dependent ε and σ are affected by the balance
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TABLE II
RESULTS: AGE ESTIMATES YIELDED BY REGRESSION PROBLEM

loss function ε MAE ρ outlier-ratio [%]

baseline MAE loss — 4.66 0.83 10.9
MAE loss + KL loss [16] — 4.56 0.83 11.4

proposed 1 MAE loss age-independent 4.54 0.83 10.3
proposed 2 MAE loss age-dependent 4.42 0.84 10.7

TABLE III
RESULTS: AGE ESTIMATES YIELDED CLASSIFICATION PROBLEM

loss function σ MAE ρ outlier-ratio [%]

baseline
1-hot target cross-entropy loss — 5.07 0.80 14.5
1-hot target cross-entropy loss + MSE [13] — 4.47 0.84 10.1
mean-variance loss [17] — 4.44 0.84 10.0

proposed 1 soft target cross-entropy loss age-independent 4.58 0.83 11.4
proposed 2 soft target cross-entropy loss age-dependent 4.42 0.83 10.7
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Fig. 5. Age-dependent ε and σ at early stopping

of training set. For example, the age-dependent ε and σ may
become larger in the age with few speakers. It is nessesary to
prepare the balanced training dataset to prevent such problem.

V. CONCLUSIONS AND FUTURE WORKS

This paper proposed a new method for speaker age estima-
tion using age-dependent insensitive loss. The age-dependent
insensitive loss treats the estimation error below the threshold
varied according to the actual age as correct. For regression
problems, the ε-MAE (mean absolute error) loss is used and
ε is varied according to the actual age. For classification
problems, the soft target cross-entropy loss is used and the
variance of the soft target is varied according to the actual age.
In this paper, we evaluated the MAE and the ratio of outliers
in estimated ages; both were found to be improved using age-
independent insensitive loss as same as conventional works.
Moreover, we validated our proposal of using age-dependent
insensitive loss.

To validate the method, we conducted experiments using
Fisher Corpus as a training set, NIST SRE08 as the validation
set, and NIST SRE10 as the evaluation set. In the regression
problem, the proposal improved the MAEs by 3.1% to 5.2%,
and by 2.0% to 12.8% in the classification problem. Also, the

number of estimation errors over 10 years old was decreased
by 5.7% to 9.8% in the regression problem, and by 9.6%
to 31.5% in the classification problem. As future work, we
plan to extend our framework by introducing multi-task loss
which estimates other speaker attributions such as gender and
individuality. And we plan to incorporate multi-modal features
such as face images.
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ANN Back-Ends for i-Vector Based Speaker Age Estimation,” in Proc.
Interspeech 2015, Sep. 2015, pp. 3036–3040.

[11] R. Zazo, P. S. Nidadavolu, N. Chen, J. Gonzalez-Rodriguez, and
N. Dehak, “Age Estimation in Short Speech Utterances Based on LSTM
Recurrent Neural Networks,” IEEE Access, pp. 22 524–22 530, 2018.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

323



[12] S. B. Kalluri, D. Vijayasenan, and S. Ganapathy, “A Deep Neural
Network Based End to End Model for Joint Height and Age Estimation
from Short Duration Speech,” in Proc. of International Conference on
Acoustics, Speech and Signal Processing, ser. ICASSP 2019, 2019, pp.
6580–6584.

[13] P. Ghahremani, P. S. Nidadavolu, N. Chen, J. Villalba, D. Povey,
S. Khudanpur, and N. Dehak, “End-to-end Deep Neural Network Age
Estimation,” in Proc. Interspeech 2018, Dec. 2018, pp. 277–281.

[14] S. Skoog Waller, M. Eriksson, and P. Sörqvist, “Can you hear my
age? Influences of speech rate and speech spontaneity on estimation
of speaker age,” Frontiers in Psychology, vol. 6, p. 978, 2015.

[15] G. Antipov, M. Baccouche, S.-A. Berrani, and J.-L. Dugelay, “Effective
training of convolutional neural networks for face-based gender and age
prediction,” Pattern Recognition, vol. 72, pp. 15–26, 2017.

[16] B.-B. Gao, H.-Y. Zhou, J. Wu, and X. Geng, “Age Estimation Using
Expectation of Label Distribution Learning,” in Proc. of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, ser.
IJCAI 2018. International Joint Conferences on Artificial Intelligence
Organization, Jun. 2018, pp. 712–718.

[17] H. Pan, H. Han, S. Shan, and X. Chen, “Mean-Variance Loss for
Deep Age Estimation from a Face,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, ser. CVPR 2018, Jun. 2018,
pp. 5285–5294.
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