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Abstract—Modern deep learning architectures are ordinarily
performed in high performance computing facilities due to the
large size of their input features and complexity of their models.
This paper proposes traditional multilayer perceptrons (MLP)
with deep layers and small input sizes to tackle this computation
requirement limitation. This study compares a proposed deep
MLP method to the more modern deep learning architectures
with the same number of layers, batch size, and optimizer.
The result shows that our proposed deep MLP outperformed
modern deep learning architectures, i.e., LSTM and CNN, on the
same number of layers and value of parameters. Both proposed
and benchmark methods were optimized in the same way. The
deep MLP exhibited the highest performance on both speaker-
dependent and speaker-independent scenarios on IEMOCAP and
MSP-IMPROV datasets.

Index Terms—Affective computing, speech emotion recogni-
tion, multilayer perceptrons, neural networks, dimensional emo-
tion

I. INTRODUCTION

Speech emotion recognition is currently gaining interest
from both academia and commercial industries. Researchers
in the affective computing areas progressively proposed new
methods to improve the accuracy of automatic emotion recog-
nition. Commercial industries are trying to make this technol-
ogy available to the market due to its potential applications.
Previously, researchers have attempted to implement speech-
based emotion recognition for wellbeing detection [1], call
center application [2], and automotive safety [3].

One of the common requirements in computing speech
emotion recognition is the availability of high performance
computing facilities since the dataset usually is very large and
the classifying methods are complicated. Graphical processing
units (GPU)-based computers are more often used than CPU-
based computers due to their processing speed to process the
data, particularly, image-like data.

This paper proposes the use of deep multilayer perceptrons
(MLP) to overcome the requirement of high computing power
required by modern deep learning architectures. The inputs
are high-level statistical functions (HSF) extracted from low-
level descriptor (LLD), which are used to reduce the dimen-
sion of input features. The outputs are emotion dimensions,
i.e., degree of valence, arousal, and dominance. The use
of this classical technique with proper configurations shows
promising results, measured in a correlation-based metric, over
modern deep learning architectures.

According to research in psychology, two perspectives exist
to model human emotions: dimensional emotion and cate-
gorical emotion. Russel [4] argued that emotion categories
could be derived from dimensional emotion, particularly in
valence-arousal space. Given this benefit, the ability to convert
dimensional emotion to categorical emotion but not vice versa,
predicting dimensional emotions is more beneficial than pre-
dicting categorical emotions. We added dominance to valence-
arousal space, since it is suggested in [5] and this label is
provided in the datasets. Dimensional emotion recognition is
performed with speech input since the target applications are
speech-based technologies like call center and voice assistant
applications.

Deep neural network (DNN) is an extension of the neural
network with deeper layers, i.e., more than one layer. Com-
monly DNNs were constructed with five or more layers [6].
This paper compares deep MLP and modern deep learning
architecture, i.e., LSTM and CNN using the criteria of con-
cordance correlation coefficient (CCC). This comparison is
made on the same conditions. Our results show that on both
speaker-dependent and speaker-independent scenarios (in three
datasets), deep MLP obtained higher performances than LSTM
and CNN from small-size input features.

II. DATA AND FEATURE SETS

This section describes data and feature sets used in this
research.

a) IEMOCAP: The interactive emotional dyadic motion
capture database [7] is used in this research. The database
contains approximately 12 h of data with 10039 utterances.
All of these data are used. Although the database consists
of the measurement of speech, facial expression, head, and
movements of affective dyadic sessions, only speech data
are processed. The dimensional emotion labels are given in
valence, arousal, and dominance attributes. The score of these
attributes are in range [1-5], and they are normalized into [-1,
1] following the work in [8] when these labels are fed into
the neural network system. Two versions of speech data are
available in the dataset: stereo data per dialog and mono data
per sentence (utterance). The mono version was used due to
ease to process with the labels. The sampling rate and format
of the data was 16 kHz and 16-bit PCM.
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The IEMOCAP dataset were arranged into two: speaker-
dependent (SD) and speaker-independent scenarios. We split
the dataset with ratio around 80/20 for training/test set on
speaker-independent scenario. The last session, i.e., session
five, is left for the test set (leave one session out, LOSO)
on speaker-independent scenario. The number of utterances in
each partition in the speaker-independent scenario is similar
to that of speaker-dependent scenario shown in Table I.

b) MSP-IMPROV: We used the MSP-IMPROV corpus
to generalize the impact of the evaluated methods. MSP-
IMPROV is “an acted corpus of dyadic interactions to study
emotion perception” [9]. This dataset consists of speech and
visual recordings of 18 hours of affective dyadic sessions.
Only the speech data, consisting of 8438 utterances, was
used. The same split ratio was used in speaker-dependent
scenario; the last session six is used for test set in speaker-
independent scenario. The same labels scale and normalization
were performed as in IEMOCAP dataset. While IEMOCAP
labels are annotated by at least two annotators, these MSP-
IMPROV labels were annotated by at least five annotators
making the commonalities of the labels are higher than the
previous IEMOCAP dataset. The 16 bits mono audio format
sampled at 44 kHz were used.

Table I shows the number of utterances allocated for each set
partition for both speaker-dependent and speaker-independent
scenarios, including MSP-IMPROV dataset.

c) Mixed-corpus: We mixed both IEMOCAP and MSP-
IMPROV datasets to create a new mixed-corpus dataset.
We concatenated speaker-dependent scenario from IEMOCAP
with speaker-dependent scenario from MSP-IMPROV. The
concatenation were performed for each training, development,
and test set. The same concatenation rules also applied for the
speaker-independent scenario.

TABLE I
NUMBER OF UTTERANCES USED IN THE DATASETS ON EACH PARTITION

Scenarios Training Development Test
IEMOCAP-SD 6431 1608 2000
IEMOCAP-LOSO 6295 1574 2170
IMPROV-SD 5256 1314 1868
IMPROV-LOSO 5452 1364 1622

d) Acoustic Feature Set: We used high statistical func-
tions of the low-level descriptor (LLD) from Geneva Minimal-
istic Acoustic Parameter Set (GeMAPS), developed by Eyben
et al. [10]. The HSF features were extracted per utterance
in which the the labels were given. This HSF features were
calculated from LLDs processed on a frame-based level with
25 ms window size and 10 ms of hop size. The use of HSF
features reduces computation complexity since the feature size
decreased from (3409 × 23) to (1 × 23 features), for the
IEMOCAP dataset. To obtain the HSF feature, however, LLDs
must obtained first. Then, HSF can be calculated as statistics
of those LLDs for a fixed time, in this case, per utterance.

To add those statistical functions, we used a silent pause
feature, which is also extracted per utterance. Silenct pause

TABLE II
GEMAPS FEATURE [10] AND ITS FUNCTIONALS; ONLY FUNCTIONALS

(HSFS) USED IN THIS DIMENSIONAL SER.

LLDs intensity, alpha ratio, hammarberg index, spectral slope
0-500 Hz, spectral slope 500-1500 Hz, spectral flux, 4
MFCCs, fo, jitter, shimmer, Harmonics-to-Noise Ratio
(HNR), Harmonic difference H1-H2, Harmonic differ-
ence H1-A3, F1, F1 bandwidth, F1 amplitude, F2, F2
amplitude, F3, and F3 amplitude.

HSFs mean (of LLDs), standard deviation (of LLDs), silence

feature, in this paper, is defined as the portion of the silence
frames compared to the total frames in an utterance. In human-
human communication, this portion of silence in speaking
might depends on the speaker’s emotion. For example, high
arousal emotion category like happy may have fewer silences
(or pauses) than a sad emotion category. The ratio of silent
pause per utterance is calculated as

S =
Ns

Nt
, (1)

where Ns is the number of frames to be categorized as silence
(silence frames), and Nt is the number of total frames within
an utterance. To be categorized as silence, the root mean square
(RMS) energy of a frame must be less than a threshold. The
threshold is a multiplication of a factor with RMS energy.
Threshold (th) and RMS energy (Xrms) are formulated as

th = 0.3×Xrms (2)

and

Xrms =

√√√√ 1

n

n∑
i=1

x[i]2, (3)

where a silence factor of 0.3 is obtained from experiments.
These equations are similar to that is proposed in [11] and
[12]. In [11], the author used a different threshold factor for the
same dataset used in this research. In [12], the author divided
the total duration of disfluency over the total utterance length
on n words and counted it as a disfluency feature.

III. BENCHMARK AND PROPOSED METHOD

LSTM and CNN are used as baselines, while MLP with
deep layers is the proposed method. All evaluated methods
used the same numbers of layers, units and value of parame-
ters.

A. Benchmark Methods: LSTM and CNN

LSTM and CNN are two common deep learning architec-
tures widely used in speech emotion recognition [13], [14],
[15]. These two architectures were used as the baselines due
to their reported effectiveness on predicting valence, arousal,
and dominance. Both LSTM and CNN have the same five
layers with the same number of units. We determined the size
of kernel in CNN architecture in order to that the number of
trainable parameters is similar to LSTM and MLP. The other
parameters like batch size, feature and label standardization,
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loss function, number of iterations, and callback criteria, are
same for both architectures.

Fig. 1 shows the structures of both LSTM and CNN. On the
first layer, 256 neurons are used and decreased by half for the
subsequent level. The decrease of the number of neurons on
each layer is based on assumption that the model is supposed
to learn better along with these layers. Five LSTM layers
used tanh as activation function, while five CNN layers used
ReLU activation function. We kept all output from the last
LSTM layer and flattened it before splitting it into three dense
layers for obtaining the prediction of valence, arousal, and
dominance. For the CNN architecture, the same flatten
layer is used before entering three one-unit dense layers.

All architectures used the same standardization for input
features and labels. A z-score normalization is used to stan-
dardize feature, while minmax scaler [16] is used to scale
the labels into [-1, 1] range. Apart from using MSE as a loss
function in LSTM and CNN, we optimized the benchmark
methods by using CCC [17] loss with multitask learning
(MTL) approach, in which the prediction of valence, arousal,
and dominance are done simultaneously. The calculation of
CCC loss (CCCL) begins from the following CCC evaluation
to measure the performance of recognition,

CCC =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
. (4)

Then, the CCC loss can be formulated as the opposite:

CCCL = 1− CCC, (5)

where ρ is Pearson’s correlation between gold standard y and
and predicted score x, σ is standard deviation, and µ is the
mean score. The total loss (CCCLT ) for three variables is
then defined as the sum of CCCL for these three as follows:

CCCLT = CCCLV + CCCLA + CCCLD (6)

where subscript V , A and D denote valence, arousal, and
dominance, respectively. The average CCC is used to evaluate
all architectures including the proposed deep MLP method.

All architectures (LSTM, CNN, MLP) used a mini-batch
size of 200 utterances (by shuffling the orders), maximum
number iteration of 180, and 10 iterations patience of early
stopping criteria (callback). An Adam optimizer [18] is used
to adjust the learning rate during the training process. Both
LSTM and CNN architectures run on GPU-based machine
using CuDNN implementation [19] within Keras toolkit [20].
The MLP architecture was implemented in scikit-learn toolkit
[16].

B. Proposed Method: Deep MLP

Fig. 2 shows our proposed deep MLP structure. The MLP
used here similar to the definition of connectionist learning
proposed by Hinton [21]. As the benchmark methods (LSTM
and CNN), deep MLP also has five layers with the same
number of units as previous. The layer structure differs from
benchmark methods in the absence of flatten layer since the
output of the last MLP layers can be coupled directly to three

LSTM (256)

LSTM (128)

LSTM (64)

Flatten()

LSTM Model

#: 575,505

LSTM (32)

LSTM (16)

CNN (256,3)

CNN (128,12)

CNN (64,12)

Flatten()

CNN Model

#:542,181

CNN (32,12)

CNN (16,12)

Fig. 1. Diagram of LSTM and CNN used for benchmarking of proposed deep
MLP; the number inside the bracket denoted the number of units (nodes); the
second number on CNN denotes kernel size, # denotes number of trainable
parameters.

one-unit dense layers. While the previous LSTM and CNN
used batch normalization layer in the beginning (input) to
speed-up computation process, this deep MLP structure did
not use that layer since the implementation only require a
minute to run on a CPU-based machine.

We used the same batch size, tolerance for early stopping
criteria, optimizer, and maximum number of iteration as the
benchmark methods. While the benchmark methods are opti-
mized with CCC loss function beside MSE, the proposed deep
MLP method used MSE only as the cost function,

MSE =
1

n

n∑
i=1

(yi − xi)
2. (7)

The total loss function is given as an average of MSE scores
from valence, arousal, and dominance,

MSET =MSEV +MSEA +MSED. (8)

There are no weighting factors used here for emotional at-
tributes since we assume all emotion dimensions are equally
contributed to the emotional state. The Python implementation
of the proposed deep MLP method and benchmark methods
are available at https://github.com/bagustris/deep mlp ser.

IV. EXPERIMENT RESULTS

A. MLP vs. DNN results

CCC is the standard metric used in affective computing to
measure the performance of dimensional emotion recognition.
We presented our results on that metric in two different groups:
within-corpus and mixed-corpus evaluations. The results are
shown in Table III and IV.

Table III shows CCC scores of valence (V), arousal (A),
dominance (D) and their average from different datasets,
scenarios, and methods. The proposed deep MLP method
outperforms benchmark methods by significant margins. On
both every emotion dimension and averaged score, the pro-
posed deep MLP attained the highest CCC score for both
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Fig. 2. Diagram of proposed deep MLP with five layers; the number inside
the bracket denoted the number of units.

speaker-dependent and speaker-independent scenarios (bold).
On the IEMOCAP dataset, the speaker-dependent score is
only slightly higher than speaker-independent score due to
the nature of the dataset structure. The utterances in the
IEMOCAP dataset is already in order by its session when
it is sorted by file names. The change from speaker-dependent
to speaker-independent is done by changing the number of
train/test partitions. In contrast, the file naming of utterances
in MSP-IMPROV made the arrangement of the sessions not
in order when utterances are sorted by its file names. We did
the sorting process to assure the pair of features and labels.
The gap between speaker-dependent and speaker-independent
scenarios in MSP-IMPROV is larger than in IEMOCAP, which
may be caused by these different files organization.

TABLE III
RESULTS OF CCC SCORES ON WITHIN-CORPUS EVALUATION WITH MSE

LOSS

Dataset Method V A D Mean

IE
M

O
C

A
P

speaker-dependent
LSTM 0.140 0.485 0.381 0.335
CNN 0.060 0.381 0.340 0.260
MLP 0.335 0.599 0.473 0.469

speaker-independent
LSTM 0.142 0.468 0.363 0.324
CNN 0.068 0.398 0.330 0.265
MLP 0.316 0.488 0.454 0.453

M
SP

-I
M

PR
O

V

speaker-dependent
LSTM 0.350 0.599 0.462 0.471
CNN 0.300 0.580 0.439 0.440
MLP 0.438 0.650 0.519 0.536

speaker-independent
LSTM 0.182 0.492 0.336 0.337
CNN 0.174 0.461 0.327 0.321
MLP 0.271 0.553 0.406 0.410

Table IV shows the results from the mixed-corpus dataset.
This corpus is a concatenation of IEMOCAP with MSP-

IMPROV for both speaker-dependent and speaker-independent
scenarios, as listed in Table I. In this mixed corpus, the
proposed deep MLP method also outperformed LSTM and
CNN on all emotion dimensions and averaged CCC scores.
The score on speaker-dependent scenario is in between the
score of speaker-dependent scenario in IEMOCAP and MSP-
IMPROV corpus. For speaker-independent scenario, the score
of mixed corpus is lower than in within corpus. This low score
suggests that speaker variability (in different sessions) affected
the result, even with the z-normalization process. Instead of
predicting one different session (LOSO), the test set in the
mixed-corpus consists of two different sessions, each from
IEMOCAP and MSP-IMPROV, which made the regression
task more difficult.

In Table III and IV, results for CNN are average scores
of 20 runs. This normalization is performed due to random
weighting initiation in CNN layers. LSTM and MLP show the
same result for each run thanks to initiation of fixed random
seed numbers.

We show that our proposed deep MLP functioned to over-
come the requirement of modern neural network architectures
since it surpassed the results obtained by these architectures.
Using a small dimension of feature size, i.e., 47-dimensional
data, our deep MLP with five layers, excluding input and
output layers, achieved the highest performance. Modern deep
learning architectures require high-end hardware which costs
expensive (e.g., GPU card). We showed that using a small deep
MLP architecture, which does not require a high computation
load, can achieve a better performance. Our proposed deep
MLP method gained a higher performance than benchmark
methods not only on both within-corpus and mixed-corpus
datasets but also on both speaker-dependent and speaker-
independent scenarios.

TABLE IV
RESULTS OF CCC SCORES ON MIXED-CORPUS EVALUATION; ALL

METHODS USE THE SAME MSE LOSS FUNCTION.

Method V A D Mean
speaker-dependent

LSTM 0.224 0.498 0.392 0.371
CNN 0.148 0.413 0.342 0.301
MLP 0.395 0.640 0.461 0.499

speaker-independent
LSTM 0.081 0.272 0.216 0.190
CNN 0.038 0.234 0.194 0.155
MLP 0.212 0.402 0.269 0.294

B. Optimizing the benchmark methods

Two strategies were performed to optimize the benchmark
methods: the use of CCC loss and different layer number.
These optimizing methods are intended to evaluate whether the
benchmark methods could close or surpass the performance of
the proposed method by using different parameters value. First,
the CCC loss is used instead of the MSE. Second, we varied
the number of layers. The first method is utilized due to the
evaluation is measured in CCC; the second method is evaluated
to avoid overfitting data by using smaller layer numbers.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

328



Table V shows the CCC scores of the benchmark methods
with CCC loss instead of MSE. The results show significant
improvement over the previous method shown in Table III.
For instance, the averaged CCC score on IEMOCAP dataset
improved from 0.335, 0.260, 0.324, 0.265 to 0.379, 0.387,
0.382, 0.334 for LSTM SD, CNN SD, LSTM LOSO, and CNN
LOSO, respectively. These improvements are reasonable since
the loss function is correlated with the evaluation metric. The
improved CCC scores are, however, still far from the scores
obtained by MLP, i.e., 0.469 for IEMOCAP SD and 0.453 for
IEMOCAP LOSO.

On the MSP-IMPROV dataset, the optimized benchmark
methods also fail to surpass the deep MLP results. In this
dataset, the gap between DNN and MSP becomes smaller.
There is also a case where a DNN method gained a higher
score in the dominance part of MSP-IMPROV speaker-
dependent scenario. In this case, however, the average CCC
score by MLP is still the highest. The highest averaged scores
by DNN in this dataset are 0.531 (MLP=0.536) for speaker-
dependent with LSTM and 0.380 (MLP=0.410) for speaker-
independent with CNN. In case of CNN, the results presented
in Table VI are also average scores of 20 runs.

The results of optimizing benchmark methods on mixed-
corpus dataset are similar to IEMOCAP and MSP-IMPROV
datasets as shown in Table IX. The performance scores ob-
tained by LSTM and CNN with CCC loss improved the pre-
vious score with MSE, but they are still lower than MLP. On
both speaker-dependent and speaker-independent scenarios,
LSTM obtained higher scores than CNN. Given the fact that
LSTM performs better than CNN in most cases, we performed
evaluation on the use of different layer numbers.

TABLE V
CCC SCORES OF OPTIMIZED BENCHMARK METHODS ON WITHIN-CORPUS

EVALUATION WITH CCC LOSS FUNCTION

Dataset Method V A D Mean

IE
M

O
C

A
P

speaker-dependent
LSTM 0.213 0.506 0.418 0.379
CNN 0.135 0.451 0.407 0.331

speaker-independent
LSTM 0.204 0.520 0.422 0.382
CNN 0.127 0.467 0.409 0.334

M
SP

-I
M

PR
O

V speaker-dependent
LSTM 0.413 0.639 0.541 0.531
CNN 0.375 0.623 0.517 0.506

speaker-independent
LSTM 0.210 0.487 0.333 0.344
CNN 0.226 0.519 0.382 0.376

Table VII shows the number of layers and their correspond-
ing number of units/nodes on each layer. These layer numbers
variation were used to evaluate LSTM and MLP. Although the
baseline results shown in Table III and IV used five layers, it
is a worth to evaluate the performance over different number
of layers. In most cases, overfitting is the common problem
in neural network to be avoided. A simple method to avoid
overfitting is by reducing the number of layers, which reduces
the number of trainable parameters.

TABLE VI
CCC SCORES OF OPTIMIZED BENCHMARK METHODS ON MIXED-CORPUS

EVALUATION WITH CCC LOSS FUNCTION

Method V A D Mean
speaker-dependent

LSTM 0.278 0.533 0.450 0.420
CNN 0.202 0.477 0.432 0.371

speaker-independent
LSTM 0.102 0.300 0.252 0.218
CNN 0.076 0.271 0.248 0.198

TABLE VII
NUMBER OF LAYER AND CORRESPONDING UNITS/NODES ON EACH LAYER

# layers # units
1 (16)
2 (32, 16)
3 (64, 32, 16)
4 (128, 64, 32, 16)
5 (256, 128, 64, 32, 16)
6 (512, 256, 128, 64, 32, 16)

Table VIII shows the effect of using a different number of
layers in LSTM method (with CCC loss). The result shows
that reducing the number of layers improves the performance
of LSTM method. This result reveals that overfitting exists in
the results with larger number of layers. The averaged CCC
scores improved from 0.379, 0.382, 0.531, and 0.344 to 0.397,
0.393, 0.532, and 0.372 for IEMOCAP SD, IEMOCAP LOSO,
MSP-IMPROV SD, and MSP-IMRPV LOSO, respectively.
Although the results are improved, this second strategy to
optimize the benchmark methods fails to surpass score of the
MLP method.

A similar improvement on reducing number of layers
was also observed in mixed-corpus dataset. Table IX shows
the improved CCC scores from the previous Table VI.
The highest CCC score by this layer number variation is
0.423 (MLP=0.499) for speaker-dependent scenario and 0.235
(MLP=0.294) for speaker-independent scenario. To this end,
two methods to optimize the benchmark methods failed to sur-
pass the performance obtained by the proposed MLP method.

C. Optimizing the proposed MLP method

The proposed MLP method is re-evaluated with different
number of layers as the benchmark methods. Table X and XI
shows the evaluation result on within-corpus and mixed-corpus
datasets.

Table X shows that by using smaller number of layers
the improved CCC scores could be obtained. In a speaker-
dependent scenario, the highest CCC score for both IEMOCAP
and MSP-IMPROV datasets were obtained by using three
layers; for speaker-independent scenario, it was two layers.
Although the improvement was small, using smaller number
of layers reduces the computation cost of the MLP method. In
this within-corpus evaluation, the CCC scores improved from
0.469, 0.453, 0.536, and 0.416 to 0.472, 0.455, 0.562, and
0.416, for IEMOCAP SD, IEMOCAP LOSO, MSP-IMPROV
SD, and MSP-IMPRPOV LOSO, respectively.
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TABLE VIII
CCC SCORES OF OPTIMIZED LSTM METHOD ON WITHIN-CORPUS

EVALUATION WITH DIFFERENT NUMBER OF LAYERS

Dataset # layers V A D Mean

IE
M

O
C

A
P

speaker-dependent
6 0.203 0.493 0.422 0.373
5 0.213 0.506 0.418 0.379
4 0.219 0.512 0.422 0.384
3 0.216 0.550 0.425 0.397
2 0.203 0.537 0.425 0.389
1 0.180 0.520 0.414 0.372

speaker-independent
6 0.199 0.478 0.402 0.360
5 0.204 0.520 0.422 0.382
4 0.191 0.528 0.413 0.378
3 0.201 0.511 0.397 0.370
2 0.193 0.552 0.432 0.392
1 0.194 0.555 0.431 0.393

M
SP

-I
M

PR
O

V

speaker-dependent
6 0.405 0.640 0.543 0.529
5 0.413 0.639 0.541 0.531
4 0.415 0.638 0.543 0.532
3 0.418 0.639 0.536 0.531
2 0.414 0.633 0.536 0.528
1 0.412 0.623 0.530 0.522

speaker-independent
6 0.208 0.501 0.341 0.350
5 0.210 0.487 0.333 0.344
4 0.191 0.503 0.346 0.347
3 0.217 0.481 0.309 0.336
2 0.264 0.507 0.344 0.372
1 0.236 0.494 0.326 0.352

TABLE IX
CCC SCORES OF OPTIMIZED LSTM METHOD ON MIXED-CORPUS

EVALUATION WITH DIFFERENT NUMBER OF LAYERS

# layers V A D Mean
speaker-dependent

6 0.259 0.529 0.423 0.404
5 0.278 0.533 0.450 0.420
4 0.272 0.534 0.459 0.422
3 0.254 0.527 0.441 0.408
2 0.264 0.553 0.451 0.423
1 0.241 0.544 0.453 0.413

speaker-independent
6 0.125 0.276 0.239 0.213
5 0.102 0.300 0.252 0.218
4 0.116 0.303 0.246 0.222
3 0.109 0.297 0.239 0.215
2 0.127 0.321 0.250 0.233
1 0.124 0.326 0.255 0.235

Table XI shows optimization of the MLP method in mixed-
corpus evaluation. In the speaker-dependent scenario, the use
of larger six layers resulted in very small numbers of CCC
scores due to convergence problem. This mixed-corpus dataset
also needs to be trained in whole iteration number instead
of using a stopping criterion. The previous results, shown
in Table IV and others, were obtained using 10 patience of
earlystopping criteria. The results were slightly improved from
0.499 to 0.508 for speaker-dependent data and 0.294 to 0.316
for speaker-independent data.

This research has thrown up several issues in need of further
investigation. First, the complexity of mixed datasets might
increase the complexity of training process. This different

TABLE X
CCC SCORES OF OPTIMIZED MLP METHOD ON WITHIN-CORPUS

EVALUATION WITH DIFFERENT NUMBER OF LAYERS

Dataset # layers V A D Mean

IE
M

O
C

A
P

speaker-dependent
6 0.311 0.614 0.475 0.467
5 0.335 0.599 0.473 0.469
4 0.342 0.582 0.476 0.467
3 0.341 0.615 0.459 0.472
2 0.332 0.612 0.458 0.468
1 0.295 0.632 0.461 0.463

speaker-independent
6 0.260 0.605 0.437 0.434
5 0.316 0.588 0.454 0.453
4 0.326 0.575 0.448 0.450
3 0.313 0.601 0.437 0.450
2 0.301 0.611 0.453 0.455
1 0.254 0.608 0.443 0.435

M
SP

-I
M

PR
O

V

speaker-dependent
6 0.243 0.595 0.483 0.441
5 0.438 0.650 0.519 0.536
4 0.478 0.672 0.535 0.561
3 0.479 0.669 0.539 0.562
2 0.453 0.674 0.538 0.555
1 0.441 0.659 0.524 0.541

speaker-independent
6 0.272 0.563 0.403 0.413
5 0.258 0.545 0.388 0.397
4 0.279 0.510 0.363 0.384
3 0.270 0.549 0.392 0.404
2 0.290 0.556 0.402 0.416
1 0.266 0.537 0.375 0.393

TABLE XI
CCC SCORES OF OPTIMIZED MLP METHOD ON MIXED-CORPUS

EVALUATION WITH DIFFERENT NUMBER OF LAYERS

# layers V A D Mean
speaker-dependent

6 4.1e-6 2.3e-7 2.1e-7 1.6e-7
5 0.432 0.638 0.453 0.508
4 0.429 0.636 0.437 0.501
3 0.405 0.640 0.457 0.501
2 0.370 0.635 0.456 0.487
1 0.292 0.625 0.450 0.456

speaker-independent
6 0.230 0.422 0.283 0.312
5 0.200 0.418 0.313 0.310
4 0.212 0.410 0.326 0.316
3 0.228 0.394 0.287 0.303
2 0.232 0.389 0.285 0.302
1 0.130 0.355 0.268 0.251

corpus evaluation is a challenge in SER, particularly on the
use of cross datasets: different datasets are used for training
and testing. Second, the finding that MLP performs better than
DNN may be shown on small datasets, as used in this research.
It is necessary to confirm these findings on larger datasets.
Third, the proposed method works effectively on the small
size of feature; this small features may be a limitation of our
proposed deep MLP method. While we optimized the MLP
method with a different number of layers, the optimization
method with a different loss function, i.e., CCC loss, is left
for the future research. We presume that the use of CCC loss
will improve the performance over MSE and MAE as observed
in the benchmark methods.
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V. CONCLUSIONS

This paper demonstrated that the use of deep MLP with
proper parameter choices outperformed the more modern neu-
ral network architectures with the same value of parameters.
We compared MLP to DNN (LSTM and CNN) with the
same number of layers (five layers), batch-size (200 batch)
and solver (adam). For both speaker-dependent and speaker-
independent scenarios, the proposed deep MLP attained the
consistent highest performance among the evaluated methods.
The proposed deep MLP also attained the highest score on
both within-corpus and mixed-corpus scenarios. We improved
both MLP and benchmark DNN method with different number
of layers. Although, the benchmark methods were optimized
with different loss function and different number of layers,
the obtained scores could not surpass the scores obtained
by MLP. Reducing number of layers in both MLP and
benchmark methods improve the performance scores slightly.
Based on the results of these investigations, there are no
high requirements on computing power to obtain state-of-the-
art results on dimensional speech emotion recognition. The
proper choice of feature (i.e., using small size feature) and the
classifier can leverage the performance of conventional neural
networks. Future research should be directed to investigate
the performance of the proposed method on cross-corpus
evaluations and on the use of different loss functions, which
are not evaluated in this paper.
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