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Abstract—The Natural Language Understanding (NLU) mod-
ule in a conversational agent interprets and understands the
user’s query. As the application scenario evolves, there is a need
to periodically update the knowledge database that supports
the agent by adapting or re-training the NLU model. Such
periodic updates could be time-consuming to the developers
and system administrator since it requires manual efforts. In
this paper, we present the OpenNLU toolkit, a user-friendly
interface for building and updating the knowledge database,
and evaluating NLU module. This paper describes in detail the
architecture, important features and design of the web-based
tool, as well as the backend features which are supported by
popular Rasa NLU toolkit, and deep learning libraries such
as Tensorflow, and PyTorch. This paper also demonstrates the
training and evaluation processes on in-house datasets alongside
other benchmarking datasets (ATIS and Snips) to exemplify the
usage of OpenNLU toolkit as to validate proof of concepts.
The open-source OpenNLU toolkit is available to the research
community 1.
Index Terms: Administrative interface, BERT language
model, Natural Language Understanding, Slot tagging, Intent
Classification

I. INTRODUCTION

Conversational agents (CA) have been deployed for many
real-world applications on smartphones and smart devices. The
use of natural language in CA offers an easy, flexible and
intuitive way in human-machine communication. However, the
CA may not be much helpful always because the language
understanding and interpretation capability of the assistants is
limited as application scenarios evolve.

Natural Language Understanding (NLU) is considered an
AI-hard problem [1]. There are inherent complexities in natu-
ral language such as anaphora, elision, ambiguity and uncer-
tainty [2]. By providing explicit domain-specific knowledge,
conversational assistants can improve understanding of user
utterance through contextual inference. General conversational
assistants like Alexa, Siri and Google Assistant rarely support
domain-specific functionalities because they are not designed
to make these inferences [3].

After the initial deployment of CA, the bulk of the workload
required lies in the maintenance of the conversational agents
to support a new service. Since domain information is evolved,

1https://github.com/oyfml/opennlu

the deployed CA will require to maintain the knowledge
source. The maintenance operations include a collection of
new additional data, retraining of the NLU model component
and evaluates performance with additional data before deploy-
ment. The retraining process is necessary to accommodate
conversation changes and future growth in the understanding
of the dialogue. This iterative training cycle can be tedious
and unmanageable if the usability of the data maintenance and
training environment is not intuitive. In particular, it is impor-
tant to have a user-friendly graphical training environment for
developers who are not technical experts of NLU. This can
help development process with ease, smooth out the workflow
of data maintenance operation. A solution would be to simplify
the interaction between developer and NLU component of the
dialogue system through the use of a user-friendly graphical
interface.

Although there are graphical interfaces available for the
development in the market, such as Googles Dialogflow, IBMs
Watson, Microsofts LUIS, Amazon Lex and Rasa X [4]–[12].
They are built on third-party proprietary Natural Language
Processing (NLP) services, they are not easily adopted and
scaled for third party applications for open source develop-
ment.

We consider that it is important that developer of CA
should have an access to NLU services as to manage the data
and evaluate their performance. That motivates us to build
a graphical web interface tool to improve the updating of
knowledge database and to support efficient deployment. The
tool can accommodate the custom features and provide an
interface with backend NLU services.

In this paper, we aim to tackle the aforementioned problem
and offer better user convenience to fulfil these requirements
by introducing our developer graphical interface, namely,
OpenNLU. The tool name OpenNLU stands for Open-sourced
NLU, which indicates the service as an open-source graphical
NLU interface for developers.

II. NATURAL LANGUAGE UNDERSTANDING

NLU is a research problem that deals with analysis and
understanding user input to extract meaningful key information
[13]–[15]. In particular, NLU is responsible to extract the
useful information such as intent and entities by performing
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intent classification (IC) and entity extraction or slot tagging
(ST) tasks, respectively. In the classical approaches, IC is
performed using discriminative classifier such as Boosting or
SVM [14], [16]–[18] and ST is performed using the sequential
classifier such as Hidden Markov Model (HMM) Viterbi
decoding or Conditional Random Field (CRF) [15], [19]–[21].
Mathematically, for word sequence W := {w1, w2, · · · , wT },
the ST can be referred to as estimation of most probable slot
sequence and intent category such that

Ŝ = argmax
i

P (S|W ) (1)

Î = argmax
j

P (I|W ) (2)

where S := {s1, s2, · · · , sT } and I are slot sequence and
intent class respectively.

The study presented in [17] explains the capability of
Deep Belief Network to classify the intent from count vector
representation. Later to incorporate the temporal information,
Recurrent Neural Network (RNN) based models were explored
to take in word sequence as input and outputs the probable slot
sequence [15]. Further, the sequence to sequence frameworks
of supervised learning was also used as multi-task learning
to identify slots, intent as well as domain [22], [23]. To
further exploit the alignment information from sequence to
sequence model, an attention-based RNN model was proposed
in the study [24]. The study presented in [25] proposes
the bidirectional interrelation model between slots and intent
classification. Recently, some studies were done on Bidirec-
tional Encoder Representations from Transformers (BERT)
to leverage contextual language information captured from a
large amount of unlabeled data to jointly perform ST and IC
[26].

A. Benchmark of NLU Frameworks

There are several platform services available publicly for
creating NLU data and training the NLU of chatbot or dialogue
system. These services have different complexity levels and
integration capabilities. The several service platforms are Rasa
[27], IBM Watson, Microsoft LUIS and Google Dialogflow.
The research study was conducted to investigate their NLU
benchmark capabilities for all of these services [28]. Rasa is
the only open-sourced service platform in the list that is open
for research and development. Rasa was observed to achieve
similar high performing results as LUIS as per the study in
[28]. This demonstrates that Rasa remains competitive with
other third-party commercial service platforms and because of
its code-transparency, demonstrates the suitability of customis-
ing the platform service for practical usage.

B. Scope of the work

As such, OpenNLU will be incorporating Rasa as the
primary backend NLU framework for model development.
Besides Rasa, backend tools are also supported using popular
deep learning frameworks such as Tensorflow and PyTorch. In
this work, we consider NLU to classify the intent and predict
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Fig. 1. Block diagram and components of OpenNLU toolkit.

the slots. There are scopes of NLU such as domain classi-
fication, named-entity recognition, etc. We first describe the
OpenNLU framework and its designed components separately
with their features. Next, we demonstrate the feasibility of
OpenNLU on standard databases with their use in framework
and results.

III. OPENNLU TOOLKIT

A. Design Principles

The major consideration behind the development of
OpenNLU is to ensure a high ease of usability. The design
and implementation of the web interface aim to abide by the
following principles or characteristics:

• Learnability: intuitive, easy and quick to learn
• Efficiency: efficient to use; simplicity in interaction
• Memorability: easy to remember; inclusion of prompts

and help screens
• Errors: low error rate; triggers to suggest user action
• Satisfaction: closure feedback to the user after completion

of a task
Figure 1 shows the block diagram and components of

OpenNLU toolkit. The input text query from the user is given
to the interface (frontend) part.

B. Web Interface Tools

The graphical interface is implemented as a web-based
application. The main objective is to allow the interface to
be accessed without considering cross-platform compatibility,
thereby operating with only a browser and network connection.
However, it is recommended to run the interface tool in the
local machine as the average computing device might not be
equipped with sufficient computing power for simultaneous
training operations.

The interface tool incorporates a couple of frameworks to
support its web application functionality. The main framework
is Flask, which is a lightweight web micro-framework that
is designed for flexible and quick web development. For the
visually appealing template and designs, the CSS framework
Bootstrap is used, alongside with other supporting technolo-
gies such as Jinja for HTML template engine and JavaScript
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Fig. 2. Overall workflow of OpenNLU and key features.

for client-side scripting. The front-end technology is important
for the sleek and alluring design and also client-side scripting
and HTML template engine allows the interface to perform
essential form checks and error triggers without having to
interrupt and call backend processes, which might be busy
with threading a requested NLU computation.

C. Backend Tools

As shown in Figure 1, the backend of OpenNLU is sup-
ported by Rasa open-source library [27] and two popular
deep learning libraries, namely Tensorflow and PyTorch [29],
[30]. Their popularity in building advanced neural network
models provides an excellent fundamental base to incorporate
future compatible NLU models. Their library and support are
extensive and have been a standard in many research studies.
There is also large communal support, which can allow for
stimulation in implementation for future OpenNLU features.

D. Features of OpenNLU

The overall workflow and key features of OpenNLU are
shown in Figure 2. The features of the interface tool are to
prioritise for ease of interaction between the developer and
the NLU model. The design layout of the interactive web
controls remains intuitive to the user to improve convenience
in the development process of NLU models. The features are
separated into their respective categories which can be seen
in the menu navigation bar on the left side of the interface as
shos in Figure 3. Next, we will describe each feature in detail.

1) Data Management: For unrestricted control over data
manipulation, OpenNLU has implemented a variety of data
processing features for the respective NLU frameworks. First,
we have data format conversions. As the data format for Rasa
(i.e,markdown and json) and Tensorflow/PyTorch (TF/PT)
(i.e., BIO) are different, OpenNLU offers data format con-
version by entering only data format. Another feature of the
data management module is to merge smaller data or split
the large data into subsets, namely, train, test, and dev or
merge two datasets. This makes openNLU different than third
party proprietary services such as Dialogflow, Amazon Lex,
etc. Please refer to Figure 3.

Fig. 3. Screenshot of data management features of OpenNLU

2) Training interface: As discussed earlier, OpenNLU sup-
port Rasa and deep learning frameworks under the hood
for training IC and ST. The training process of Rasa is
dictated by the configuration pipeline, which is customisable
to specify intrinsic components, such as featurizers, intent
classifiers or entity extractors [31]. The backend algorithm
for the Tensorflow and PyTorch is the implementation of the
BERT model for Joint Intent Classification and Slot Filling
[26]. The developers can able to modify the hyperparameters
of the Joint BERT model and tune the model w.r.t. updated
data which is not possible for third party proprietary services
such as Dialogflow, Amazon Lex, etc. There is also the scope
of replacement where the Joint BERT model can be replaced
with newly researched or explored NLU model as the tool is
backed up with TF/PT.

Fig. 4. Screenshot of model training feature of OpenNLU.

3) Performance Evaluation: The performance evaluation
features are available once the training performed or loading
the model. Upon training or loading a model, the evaluation
page will be made available for user access. The current
toggled model will be an active model. Users can do so by
selecting the model name in the model directory at the side
navigation bar. The active model will appear highlighted in
blue and its interpreter will be selected for evaluation. For
performance evaluation, there consists of two functions, one is
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TABLE I
DIFFERENT RASA PIPELINES AND ITS COMPONENTS

Components spaCy supervised ConveRT
pipeline pipeline pipeline

Tokenizer Spacy Whitespace ConveRT
Featurizer Spacy CountVectors ConveRT

IC Sklearn Embedding Embedding
ST CRF CRF -

the evaluation of a single message using the interpreter, while
the other is evaluating an entire test dataset. Other third-party
proprietary services such as Dialogflow or Amazon Lex do
not have to evaluate the performance on entire data over their
developer interface, whereas OpenNLU offers this feature.
Please refer to Figure 5 for evaluation feature.

Fig. 5. Screenshot of evaluation feature of OpenNLU.

IV. RESULTS AND DISCUSSIONS

This section presents the NLU performance, in particular IC
and ST, on standard databases such as ATIS and Snips. We also
present the result on our inhouse collected data for chatbot of
the autonomous transportation system. We have considered the
three kinds of pipelines or NLU systems using Rasa, namely,
spaCy, supervised and ConveRT [31], [32]. Basically, they are
using pre-trained word embedding, supervised word embed-
ding, and ConveRT transformer models, respectively. Table
I shows different components used in these pipelines. More
details are available here [31]. For deep learning framework,
we have used Joint IC and ST using the BERT model, with
the exact same hyper-parameters [26]. The neural network
architecture for the Joint BERT model is shown in Figure 6.

A. Database

In this work, we use our data for chatbot used for au-
tonomous bus transportation [33]. This inhouse dataset con-
tains information about a passenger inquiry that we will refer
to as ‘Autonomous Bus’ (AB) database in this study. The slot
values are representing bus stops, stations, or location names.
We also used widely used benchmarks, namely ATIS and Snips
dataset for the comparison. The domain of ATIS data is related
to air flight reservations [34]. Snips data is related to queries
uttered to a mobile device suggesting a request or action [35].
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Fig. 6. Joint BERT architecture for IC and ST. After [26]

TABLE II
STATISTICS OF DIFFERENT DATASETS FOR THE EXPERIMENTS

Database Total examples Intents Slotstrain/validation/test
AB 1057/166/296 10 9

ATIS 4478/500/893 20 100
Snips 13084/700/700 10 72

The statistic of different datasets used in this work such as
number of examples, intents and slots are shown in Table II.

B. Results

Experimental results are performed on the F1 measure,
which conveys the balance between precision and recall value.
Table III shows IC and ST performance on two benchmarking
datasets, namely ATIS and Snips. The Joint BERT model in
Tensorflow and PyTorch outperformed the Rasa models by a
slight margin. This is because of the embedded contextual
information in the BERT language model that has helped
slightly over the convention word embedding approach used
in Rasa. In larger datasets, i.e., Snips and ATIS, the benefit
of using a large language model can be seen as vocabulary
outside of training data are handled well. As seen from the
ATIS results, Rasa models tend to suffer more due to the lack
of domain-specific language. ATIS involves the same domain
throughout the entire dataset, where intents have entities that
overlap between classes. Their entities are generally country or
state names which are also pre-trained in BERT. Therefore, the
Joint BERT model has a significant advantage over this aspect.
On the other hand, for Snips, there are inherent terminologies
that are specific to each intent. These terminologies can be
recurrent in the test dataset where the model can correctly
differentiate the intent through recognising the terminology as
an entity. This is where the Rasa model are seen to perform
better as compared to their performance in ATIS. From the
results we observed, Rasa models do not fall too far behind
the state-of-the-art Joint BERT model and remain competitive
for most parts. Therefore, the choice of which model to select
for training will be up for the decision of the user since
their performance is very similar. In general, the language
understanding capabilities of the technologies implemented
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TABLE III
EXPERIMENTAL RESULTS WITH OPENNLU ON DIFFERENT DATASET

Frameworks Intent Classification Slot tagging
AB ATIS Snips AB ATIS Snips

ConveRT 0.9898 0.9452 0.9744 - - -
spaCy 0.983 0.8816 0.9547 0.7673 0.9018 0.9176

supervised 0.9864 0.9268 0.9685 0.9172 0.9005 0.9184
Tensorflow 0.9763 0.9735 0.9843 0.9734 0.9746 0.9706

Pytorch 0.9657 0.9735 0.9857 0.894 0.9527 0.9584

in OpenNLU have been successful enough to yield positive
results, with most models attaining over 90% F1 scores on
test set evaluation.

V. CONCLUSIONS

In this paper, we propose and release an open-source toolkit,
namely, OpenNLU to address the issue of data maintenance
operation by the developer as this graphical web interface
enhances the experience and confidence before deployment.
The use of the simple and intuitive design in the interface can
benefit new users without development expertise to adopt the
technology without complications. Also, the customisability,
support for complex models and streamline user interactions
can allow experienced developers to operate this maintenance
cycle quickly. We discussed the key features by OpenNLU in
detail that make OpenNLU different from third party services.
Lastly, we have also used existing and our inhouse NLU data
to validate the proof of concept and show the capability of
OpenNLU.
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[22] D. Hakkani-Tür, G. Tür, A. Çelikyilmaz, Y. Chen, J. Gao, L. Deng,
and Y. Wang, “Multi-domain joint semantic frame parsing using bi-
directional RNN-LSTM,” in INTERSPEECH, 2016, pp. 715–719.

[23] D. Guo, G. Tür, W. Yih, and G. Zweig, “Joint semantic utterance
classification and slot filling with recursive neural networks,” in IEEE
Spoken Language Technology Workshop, SLT, 2014, pp. 554–559.

[24] B. Liu and I. Lane, “Attention-based recurrent neural network models
for joint intent detection and slot filling,” in INTERSPEECH, 2016, pp.
685–689.

[25] H. E, P. Niu, Z. Chen, and M. Song, “A novel bi-directional interrelated
model for joint intent detection and slot filling,” in ACL, Volume 1: Long
Papers, 2019, pp. 5467–5471.

[26] Q. Chen, Z. Zhuo, and W. Wang, “BERT for joint intent classification
and slot filling,” CoRR, vol. abs/1902.10909, 2019.

[27] T. Bocklisch, J. Faulkner, N. Pawlowski, and A. Nichol, “Rasa: Open
source language understanding and dialogue management,” CoRR, vol.
abs/1712.05181, 2017.

[28] X. Liu, A. Eshghi, P. Swietojanski, and V. Rieser, “Benchmarking natural
language understanding services for building conversational agents,”
in International Workshop on Spoken Dialogue Systems Technology
(IWSDS). Springer, April 2019, pp. 1–13.

[29] M. Abadi, P. Barham, J. Chen et al., “TensorFlow: A system for large-
scale machine learning,” in USENIX Symposium on Operating Systems
Design and Implementation, OSDI, 2016, pp. 265–283.

[30] A. Paszke, S. Gross, F. Massa et al., “PyTorch: An imperative style,
high-performance deep learning library,” in NeurIPS, 2019, pp. 8024–
8035.

[31] “RASA docs,” https://rasa.com/docs/, online; last accessed 23 October
2020.

[32] M. Henderson, I. Casanueva, N. Mrksic, P. Su, T. Wen, and I. Vulic,
“ConveRT: Efficient and accurate conversational representations from
transformers,” CoRR, vol. abs/1911.03688, 2019.

[33] M. Madhavi, T. Zhan, H. Li, and M. Yuan, “First leap towards de-
velopment of dialogue system for autonomous bus,” in International
Workshop on Spoken Dialogue Systems Technology (IWSDS). Springer,
April 2019, pp. 1–6.

[34] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington, “The ATIS spoken
language systems pilot corpus,” in Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley. Morgan Kaufmann,
1990.

[35] A. Coucke, A. Saade, A. Ball et al., “Snips voice platform: an embed-
ded spoken language understanding system for private-by-design voice
interfaces,” CoRR, vol. abs/1805.10190, 2018.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

385


