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Abstract—The direction of arrival (DOA) estimation is a well-
known research problem. It is conditional to different microphone
array geometry and acoustic room conditions. It also becomes
more challenging in the presence of noise and reverberation.
Many traditional signal processing approaches such as least
square (LS) based rely on time difference of arrival estimation
which is not robust to adverse acoustic conditions and hampers
the DOA estimation. This problem can be solved using learning-
based algorithms, which uses a large amount of data simulated on
similar acoustic conditions. Though much of the work in learning
algorithms until now leverages augmentation techniques and
deep neural network (DNN) architecture for achieving robustness
in DOA estimation, very less attention is given to the feature
representation. Robust feature representation can be achieved
using certain geometry of microphone array. In this work,
a framework comprising of a learning-based DOA estimation
along with a circular co-prime microphone array(CCMA) ar-
rangement is proposed. Experiment results show that a robust
feature representation is indeed essential in estimating the DOA
accurately and gives a significant improvement in terms of
root mean squared error(RMSE) and mean-absolute error(MAE)
scores when compared to other state-of-the-art DNN and signal
processing approaches.

I. INTRODUCTION

Microphone array-based DOA estimation is a well-known
research problem and becomes more challenging in adverse
acoustic conditions comprising reverberations and background
noise. It has a number of applications, some of which are tele-
conferencing [1], camera steering [2], and automatic distant
speech recognition [3], [4], which requires prior information
of the source location. DOA estimates are affected due to
distortions introduced by reverberations and background noise,
and therefore there is a need for a robust DOA estimation
algorithm.

Various signal processing algorithms over the past decade
have been proposed to estimate DOA and can be catego-
rized accordingly. First of such category is subspace based
approaches which includes multiple signal classification (MU-
SIC) [5], [6]. Second category is based on time difference
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of arrival (TDOA) which uses Generalized Cross Correlation
(GCC) method [7]–[10], and LS based method [11]. Third
Category is based on generalization of the cross correlation al-
gorithms such as steered response power with phase-transform
(SRP-PHAT) [12], multi-channel cross correlation coefficient
(MCCC) [13]. Fourth category comprises of probabilistic al-
gorithms such as maximum likelihood(ML) method [14], Fifth
Category includes methods based on histogram analysis [15],
[16]. Most of the signal processing methods mentioned above
get affected by acoustic distortions such as reverberation and
background noise. DNN have been popular in the last decade
because of the non-linearity it introduces to capture various
complex patterns from the data. Due to a large amount of data
and various simulation tools available, DNN has achieved the
state of the art performance in various problem statements,
including DOA estimation. Some of the noted work from last
few years are referred in [17]–[19].

Different microphone geometries have been used for the
DOA estimation like uniform linear array (ULA) [20], [21]
and uniform circular array [22]. Recently co-prime circular
microphone array was proposed, which utilizes the co-prime
pair of arrays, where each sub-array is co-prime related [23]–
[26]. The distance between the sensors in each sub-array
is related to the number of sensors in the other sub-array.
The co-prime array can resolve upto O(AB) sources (A
and B co-prime number of elements in each sub-array) with
A+B − 1 sensors. This can be used when it is necessary to
reduce the mutual coupling between the elements. The distance
between the microphones in the co-prime microphone array is
defined in such a way that the grating lobe problem was also
minimized, which can eventually lead to more accurate DOA
estimation as compared to a uniform circular array.

Though microphone geometry is not that important in
learning-based algorithms [17], a robust feature representation
in reverberate and noisy conditions is important to estimate
DOA more accurately. The contribution of this paper is two
folds; first, it analyses the feature representation in adverse
conditions by studying feature extracted using a uniform
circular microphone array(UCMA) and co-prime circular mi-
crophone array(CCMA). Second, the significance of array
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geometry by comparing learning-based DOA estimation using
co-prime and uniform circular microphone array.

The rest of the paper is structured as follows. Section-II
introduces the signal model and co-Prime circular microphone
array’s architecture. This section also explains the proposed
framework, which uses features extracted using co-prime and
uniform array for DOA estimation and the algorithm used.
Section-III compares the proposed framework with different
DNN architecture and microphone array geometry, this also
explains the data-set used for the learning purpose. Section-
IV concludes the paper with a discussion on future work.

II. LEARNING BASED DOA ESTIMATION USING CO-PRIME
CIRCULAR MICROPHONE ARRAY

In this section, the problem of learning based DOA estima-
tion is formulated and explained. Subsequently, a CNN based
architecture is detailed for the proposed framework, which
uses directional features generalised cross-coorelation with
phase transfrom (GCC-PHAT) [9] using a co-prime circular
microphone array.

A. Signal Model for DOA estimation

Let the signals acquired at the microphone array be
y(n, θ) = [y1(n, θ), y2(n, θ), . . . , yL(n, θ)], where θ ∈
[1◦, 360◦] is the angle related to the direction of arrival with
respect to center of the microphone array geometry. The mi-
crophone array captured signals y(n, θ) can be mathematically
represented as

y(n, θ) = h(n, θ)~ x(n, θ) + v(n) (1)

where x(n, θ) denotes the source signal due
to the source located in the direction θ.
h(n, θ) = [h1(n, θ), h2(n, θ), ...., hL(n, θ)], is the room
impulse response (RIR) which depends upon the source
position, each microphone position and the room dimensions
and v(n) = [v1(n), v2(n), ...., vL(n)], is the additive
background noise, which is assumed to uncorrelated for
each microphone. L being the number of microphone in the
array.

B. Co-Prime Geometry for Circular Microphone Arrays

Co-Prime Circular Microphone Array (CCMA) is a combi-
nation of two sparse sub-arrays, each consisting of A and B
number of microphones respectively, such that A and B are
co-prime. CCMA can be visualized in Figure-1, in which two
sub-arrays are denoted by blue and red color respectively, with
one microphone common (orange) in both, which makes the
total number of microphones L = A+B − 1.

Assuming the reference microphone of CCMA on the x-axis
the time delay between the ith microphone and the centre is
given by [27]

τi =
r

c
cos(θ − φi, ) (2)

where i = 1, . . . , L, r is the radius of the CCMA, c is the
speed of sound (334 m/s) and φi is given as
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Fig. 1. Illustration of Co-prime Microphone array Geometry, which comprises
of two sub-arrays depicted in red and blue, with orange as the common
position point.

φi =

{
πi
A , i mod 2 = 0
π(i−1)
B , i mod 2 = 1.

(3)

.

C. GCC-PHAT Representation for DOA Estimation

For robust DOA estimation, it is very important to esti-
mate the TDOA between the microphones as accurately as
possible. Therefore GCC-PHAT is one of the most promising
approaches that can be taken into consideration for robust
TDOA estimation. Considering the microphones i and j the
TDOA is estimated using GCC-PHAT and given as

γij =
1

2π

∫ ∞
−∞

ψijyi(ω)y
∗
j (ω)e

jωtdω. (4)

where γij is the GCC-PHAT feature , yi(ω) and y∗j (ω) is the
Fourier transform of the signal received at ith and conjugate
Fourier transform of the signal received at jth microphone
respectively. The GCC-PHAT makes use of phase transfrom
as weighing factor which is defined as

ψij =
1∣∣yi(ω)y∗j (ω)∣∣ (5)

The GCC-PHAT features are extracted and applied as an
input for the DNN classifier, and the feature representations
are shown in Figure-2 and 3 for 0 dB SNR and clean condition
respectively. Each pattern corresponds to a particular angle
of arrival. The same audio and the noise is used for the
representation of the features for different angles. It is evident
that the CCMA is less affected by the noise as the feature
representation has less distortion than the UCMA features.
This can be witnessed by the feature representation in the
Figure-2 and 3 at lower SNR and the clean conditions, which
show that the microphone array plays an important role for
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Fig. 2. Comparison of GCC-PHAT feature representation for angle from 0-
240 degree with step size of 60 degree at 0 dB SNR for: (a) UCMA(above)
and (b) CCMA(below)

Fig. 3. Comparison of GCC-PHAT feature representation for the angle from
0-240 degree with a step size of 60 degree in clean conditions for (a)
UCMA(above) and (b) CCMA(below)

robust features extraction and so for the classification based
DOA estimation.

For the DOA estimation as a classification problem, the
TDOA based features, as shown in Figure-2 and 3 play a very
important role. For the DNN based classification extracting
discriminative features for each class plays an important task
towards the accuracy. If the features correlate well with the
class, the classification is accurate. The above GCC-PHAT
features which are discriminative for each angle has been used
as the input to the DNN based classifier.

D. DOA Estimation using CNN

The DOA as a classification problem needs discriminative
features so that the DNN based classifier can learn it effi-
ciently. Given the input as GCC-PHAT features, the final layer
of the DNN based classifier generates the probabilities of the
360 classes, i.e., probabilities for each DOA angle. The overall
DNN based CNN architecture used as a classifier, which is
indeed used for learning the patterns of the input features,
which is in the matrix format (M × N) treated as an image
consists of two convolutional layers for its ability to recognize
the geometrical patterns via convolution. Each convolutional
layer with 64 filters with kernel size (3 × 3) is followed by
the max-pooling layer, which is used for the dimensionality
reduction having the size of (2×2) hence helping the problem
of over fitting by reducing the parameters to be learned which
leads to increased computational speed. The dimensions of the
features after the second max-pooling layer has being fattened
and supplied to the two fully connected dense layer with 1024

Input GCC
Features

Convolutional
Layer,Filters=64

Kernal Size=(3,3),ReLU

Max Pooling (2∗2)

Convolutional
Layer,Filters=64

Kernal Size=(3,3),ReLU

Max Pooling (2∗2)

Flatten Layer

Dense Layer 1024
Nodes, ReLU

Dense Layer 512
Nodes,ReLU

Dense Layer 360
Nodes,Softmax

Probabilities
for each class

Fig. 4. CNN architecture for the proposed framework for DOA classification,
based on GCC-PHAT as the Input Features.

and 512 nodes. The final dense layer, which produces the
probabilities for 360 classes, has 360 nodes with the Softmax
activation function. The input GCC features goes filtering and
activation step operated through convolutional kernals W as

q = α(W ∗ γij + b) (6)

where W is the kernal, b is the bias, γij is the input features
which is interpreted as image of dimension M × N , α(·)
represents the ReLu activation function for a specific layer.
The kernal is computed through an ADAM optimizer which
minimizes the Sparse Categorical Cross Entropy loss between
the predicted output and the target values i.e., the actual label.
The output of the second CNN-layer is then fed to the dense
layers. The final dense layer with 360 nodes with SOFTMAX
activation function produces probabilites for each class which
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is given as

p(θk = l) =
e(qk(l))∑H
h=1 e

(qk(h))
; l ∈ [0, H − 1] (7)

Where H = 360 classes, k ∈ [1...K] where K is the total
number of frames from the previous dense layer. The CNN
architecture is illustrated in Figure-4, which is used as the
learning architecture in this work.

E. Algorithm for Learning Based DOA Estimation

Algorithm 1: Simulation for Training Dataset and
Learning Methodology

Input: Source Signal xj
Output: Microphone Signal yi,j
Dataset Simulation for Training Phase

1 Room Size = 7m x 5m x 3m (in meters)
2 Source Distance = 4m (in meters)
3 θ ∈ [1◦, 2◦, ....., 360◦]
4 Microphones ∈ [1, 2, ..., 8]
5 for Each j in θ do
6 for Each i in Microphones do
7 RT60 = rand (0.1, 1) (in ms)
8 SNR = rand (0, 20) (in dB)
9 hi,j = rir generator (Room Size, Source

Distance, RT60)
10 yi,j = hi,j ~ xj + ai,j
11 end
12 Fj = GCC-PHAT ((yj))
13 end

Input: Input Features : F = [F1, ....., F360]
Input: Output Labels (θ) = [1◦, ....., 360◦]
Output: Microphone Signal yi,j
Training Phase

1 Epochs ∈ [1, 2, ...,K]
2 for Each k in Epochs do
3 θ̂ = CNN(F ,Wk)
4 L = Loss (θ̂, θ)
5 Wk = BackProp(L)
6 end

Input: Input Features : F = [F1, ....., F360]
Input: Trained CNN Weights: W
Output: Predicted DOA
DOA Estimation Phase

1 θ̂ = CNN(F,W)
2 RMSE = calculate rmse(θ̂, θ)
3 MAE = calculate mae(θ̂, θ)

Algorithm-1 shows the data simulation,training and DOA
estimation phase.

TABLE I
ACOUSTIC PARAMETERS FOR SIMULATING TRAINING DATA

Simulated Training Dataset

Input Speech Audio 75,600 audios(42 for each angle)
of variable lenght

Room Size(m) 7m x 5m x 3m
Source Distance(m) 4m

Reverberation time (T60) (s) 0.1s to 1s (randomly chosen)
SNR(dB) Uniformly sampled between 0dB to 20dB

TABLE II
ACOUSTIC PARAMETERS FOR SIMULATING DEVELOPMENT DATA

Simulated Development Dataset

Input Speech Audio 5,400 Different audios(5 for each angle)
of variable lenght

Room Size(m) 6m x 8m x 4m
Source Distance(m) 5m

Reverberation time (T60) (s) 0.1s to 1s (randomly chosen)
SNR(dB) 0dB, 10dB, 20dB

III. PERFORMANCE EVALUATION

This section explains the conditions taken into consider-
ation for the generation of the dataset used to conduct the
experiments. It also shows the performance comparison of
the proposed framework with other existing state-of-the-art
frameworks.

A. Experimental Dataset

As the learning-based algorithm requires a good amount
of dataset to learn. The datasets are simulated under various
room conditions, SNR levels, and RT60 time. The data is
simulated using 8-channel circular array with diameter of
20cm comprising of both the array geometry arrangement i.e.
UCMA and CCMA respectively. The RIR is simulated using
the Image source method (ISM) method [28], [29], [30] and
convolved at various RT60 parameter, with the clean speech
taken from Librispeech database [31]. The convolved data is
further augmented using additive noise taken from MUSAN
noise database [32] at different SNR.

B. Experimental Conditions and Performance Measure

In Table-I and II the experimental conditions for the datasets
are shown, in which the room size, RT60 and the SNR level
used for simulating the dataset is mentioned. The learning
phase of the experiments requires both the training and vali-
dation datasets. Therefore the simulated data was divided into
two parts. The simulated data has total of 75,600 files, from
which randomly chosen 200 audios for each DOA angle which
are added to 72,000 audio files, and are used for training
purpose. Similarly randomly chosen 10 audios for each DOA
angle which are added to 3,600 audios for validation purpose.
For the development purpose, 5 audios for each DOA are
simulated as per the parameters in Table-II, which add to 5,400
audios with 1,800 audios for each SNR. The performance of
the proposed framework on this testing data was measured
using two parameters root mean squared error(RMSE) and
mean absolute error(MAE) which were calculated using (8)
and (9) respectively.
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TABLE III
COMPARISON OF RMSE AND MAE SCORES FOR VARIOUS ESTIMATION
ALGORITHMS AND COMBINATION OF ARRAY GEOMETRY AT DIFFERENT

SNR LEVELS.

Microphone
Array

Methods SNR 0dB SNR 10dB SNR 20dB

Root Mean Squared Error(RMSE)

Uniform
GCC-LS 18.26 6.52 4.19
DNN-SL 0.4 0.36 0.25

CNN 0.16 0.1 0.089

Co-Prime
GCC-LS 12.11 4.33 3.62
DNN-SL 0.29 0.17 0.098

CNN 0.14 0.050 0.036
Mean Absolute Error(MAE)

Uniform
GCC-LS 8.72 0.96 0.87
DNN-SL 0.21 0.19 0.1

CNN 0.13 0.093 0.081

Co-Prime
GCC-LS 3.57 0.84 0.73
DNN-SL 0.16 0.11 0.093

CNN 0.097 0.032 0.021

RMSE =
1

V

V∑
v=0

[(
θ̂v − θv

)2]
(8)

MAE =
1

V

V∑
v=0

(∣∣∣θ̂v − θv∣∣∣) (9)

where V = 360 whereas θv and θ̂v are actual and predicted
probabilites of the DOA.

C. Experimental Results

The experiments are conducted at various SNR with differ-
ent combinations of microphone array geometry and neural
network architecture. From Table-III, it can be clearly ob-
served that the proposed framework, which uses CNN and
Co-Prime array, performs significantly better than the other
framework listed at all SNR levels using RMSE and MAE
as the performance metric. Also, CNN based classification
achieves a better result than the state-of-the-art LS method
(GCC-LS) and the single-layer neural network (DNN-SL) [17]
because of the reason that our input GCC-PHAT features
are in the matrix form (M×N). Figure-5 shows the RMSE
values for different array geometries for various SNR levels
at each epoch of the validation set for CNN. It can also be
inferred from Figure-5 that in learning-based DOA estimation,
array geometry does matter. This is due to the fact of feature
representations, when extracted from Co-Prime array, are more
robust to noise, which can be seen in both Table-III and Figure-
5. At lower SNR levels, it can be observed that when array
geometry is Co-Prime, lower values of RMSE and MAE are
achieved when compared with other frameworks.

To show the robustness of the CCMA when compared to
UCMA for GCC-LS and CNN methods, a new set of data
is generated with 15 audios for 10 DOA from 0 to 324 with
a step size of 10 degrees. The source distance considered is

0 2 4 6 8 10 12 14
No. of Epochs

0.05

0.10

0.15

0.20

0.25
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SE

coprime_SNR=0
coprime_SNR=10
coprime_SNR=20
Uniform_SNR=0
Uniform_SNR=10
Uniform_SNR=20

Fig. 5. Comparison of RMSE scores of Uniform and Co-Prime Circular Array
for CNN method on validation dataset.
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Fig. 6. Average error in DOA estimation using CCMA and UCMA for CNN
and NON-DNN method.

4.5m with SNR of 0 dB. The average error in DOA estimation
is calculated using

Eavg =
1

E

E∑
e=1

(θ̂e − θe), (10)

where Eavg is the average error, and E is the total number of
audios for a particular instance. Figure-6 shows the average
error in DOA estimation with GCC-LS and CNN. It can be
observed that the CCMA is performs better than the UCMA
irrespective of the methods. It also shows the consistency in
the error for the CNN based DOA estimation.

IV. CONCLUSION AND FUTURE WORK

In this work, the significance of using a co-prime arrange-
ment over the uniform arrangement of the array with learning-
based DOA estimation is discussed. The paper also shows
the superiority of the proposed framework with traditional
signal processing algorithms such as Least Squares (LS). The
robust representation of features at lower SNR using Co-Prime
arrangement is leveraged, and it is observed that for learning
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based DOA estimation, array geometry is indeed important
because feature representation is dependent on it.

The future work can be extended to generalizing the model
on various types of acoustic environments, like with different
rooms and positions of source and microphone. This arrange-
ment can be further extended to the Multi-Channel speech
enhancement task, which needs to be explored.
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