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Abstract—In analog communication channels, such as radio
broadcasting, the superposition of multiple reflected signals
causes multipath fading. Multipath fading often results in the
fluctuation of the received electric intensity levels of these
signals; thus, it causes severe quality degradation in audible
sounds. In this paper, we focus on speech enhancement under
a fading communication channel with additive Gaussian noise.
We attempt to reconstruct the original speech based on the use
of denoising autoencoders that employ mean-squared-error and
additive perceptual evaluation of speech quality (PESQ)-based
loss functions in multi-task learning (MTL). The experimental
results indicate that the MTL-based autoencoder improves PESQ
scores from 2.00 to 2.75 for demodulated signals under fading
communication channels with additive Gaussian noise.

I. INTRODUCTION

Although analog radio broadcasting based on wireless com-
munication technology is generally considered a legacy media,
it continues to occupy a prominent position in daily life.
Specifically, in Japan, it is recognized as a means of receiving
information in disasters, such as floods and mega-earthquakes
[1]. There are two reasons why such obsolete media is still
preferred. First, analog radio receivers are available at a lower
cost than digital devices, such as smartphones. Second, the
low battery consumption of analog receivers enables the long
service periods required during extended blackout situations.
In radio broadcasting, a variety of receiving environments
exist, such as urban areas surrounded by high-rises and subur-
ban regions where open fields are typical. The quality of the
received signals principally depends on the electric intensity
levels at the receiving points; they considerably fluctuate
owing to the interference of reflected waves and the existence
of additive Gaussian noise in the communication channel.
In a wireless communication channel, one can observe the
degradation of receiving signals based on low signal-to-noise
ratios (SNRs) and fluctuations caused by reflections occurring
in the ionosphere or obstacles, such as mountains. The fluctu-
ations caused by these types of reflectors are called multipath
fading [2]. Multipath fading is a phenomenon generated by
the superposition of multiple reflected signals having different
amplitudes and phases. In this case, the electric intensity
levels vary drastically depending on the arrival time differences
of the reflected signals at the receiving point. Therefore, if
we introduce speech enhancement approaches to this form
of media, it is possible to automatically measure the signal
quality over a wide area of receiving points and place a relay
station at a location where it can recover the degraded signals.

Since it is unnecessary to evaluate the quality of signals
manually at the receiving point, it will enable us to place a
relay station at an overwhelmingly low cost. In the research
field of speech enhancement, there have been many attempts
to reconstruct the original signal in a noisy environment.
In the literature, for example, denoising autoencoders [3],
[4], [5], [6], [7], variational-autoencoders [8], and generative-
adversarial-network-based methods [9], [10] have been pro-
posed, and these approaches have been used to obtain high-
quality signals from degraded ones. However, these attempts
have only been applied to signals in noisy environments.
There have not been attempts to reconstruct fluctuating signals
that are subject to multipath fading. In speech enhancement,
perceptual evaluation of speech quality (PESQ) [11] generally
measures the quality of the reference/degraded signals and
estimates the mean opinion score (MOS) by comparing them;
thus, there is a drawback in that it is not practically portable
because estimating the MOS requires two time-aligned sig-
nals. In recent years, non-intrusive PESQ estimation methods
based on neural networks have been proposed to counter this
drawback [12].

In this paper, we attempt to recover speech signals affected
by multipath fading based on the use of denoising autoen-
coders. We propose a method based on multi-task learning,
which incorporates mean squared errors (MSEs) and PESQ
scores. Then, we discuss the efficacy of autoencoder-based
speech enhancement under fading channel conditions.

II. COMMUNICATION CHANNELS IN RADIO
BROADCASTING

In this section, we briefly describe wireless communica-
tion in radio broadcasting, followed by amplitude modulation
(AM), one of the popular global signal modulation methods.
Then, we outline a fading communication channel, which
degrades the quality of signals.

A. Wireless Communication Based on Amplitude Modulation

In analog radio broadcasting, AM and frequency modulation
(FM) are the mainstream modulation methods used worldwide,
and this study focuses on AM, which is easy to implement and
simulate using software-defined radio tools.

Fig. 1 shows the modulation/demodulation diagram for the
wireless communication channel discussed in this paper. The
modulated signals pass through the fading communication
channel with additive Gaussian noise (AGN). At the receiving
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Fig. 1. Overview of AM Wireless Communication Channel Simulation and Speech Enhancement

0dB

0dB

Original

Fading
f_d=2.0

PESQ=3.65

Fading
f_d=0.3

PESQ=4.17

-24dB

-24dB

Fig. 2. Examples of Demodulated Speech Signals under Multipath Fading

point, the signals are demodulated. For simplicity, we do not
consider any propagation losses through the communication
channel. The AM carrier frequency ranges from 300 kHz to 3
MHz, and this frequency band is called the medium frequency
(MF) [13].

In AM, the carrier without a phase offset is defined as

vc(t) = Vc cos 2πfct, (1)

where Vc is the carrier voltage and fc is the carrier frequency.
For simplicity, consider a speech signal represented by a

cosine wave
vs(t) = Vs cos 2πfst, (2)

where Vs is the signal voltage and fs is the signal frequency.
The modulation is

vm(t) = (Vc + Vs cos 2πfst) cos 2πfct

= Vc cos 2πfct+
Vs

2
(cos 2π(fc + fs)t

+cos 2π(fc − fs)t) . (3)

As indicated by the equation, one of the characteristics of AM
is that modulation signals appear on the upper and lower sides
of the carrier frequency in the spectrum.

In this study, we simulate the AM communication channel
according to GNU Radio [14], which is a software-defined
radio toolkit. In software-defined radio, demodulation is real-
ized by a simple cascade of decimation, band limitation, and
low-pass filters.

B. Fading Communication Channels

In wireless communication, the signal emitted from the
transmission point can reach the receiving point through mul-
tiple paths. That is, buildings, mountains, and the ionosphere
can act as reflectors, and therefore multiple signals can be
observed at the receiving point. At this time, the signal is
attenuated by amplitude/phase differences among the received
signals. This phenomenon is called multipath fading [2],
[15]. When the reflected signals overlap with each other, the
composite signal is approximated by the Rayleigh distribution:

f(x) =
x

σ2
exp

(
− x

2σ2

)
, (4)

where σ2 = E[x2]. Multipath fading often causes drastic
changes in the amplitudes of demodulated signals, which
can significantly degrade the sound quality. In addition, in
ionospheric reflection, the reflected signals may experience
Doppler frequency shifts because of the fast movement of
molecules in the ionosphere [16].
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Fig. 3. Denoising Autoencoder Configuration for Speech Enhancement

In this study, we assume that the signal in the communica-
tion channel is affected by a Doppler frequency shift caused
by the motion of molecules. Then, we simulate the signal in
the fading channel according to [17]. The complex gains for
the modulated signal, which follows the Rayleigh distribution,
with the maximum Doppler shift fd, are given by

x(t) =

√
2

N

N∑
n

exp (j (2πfdt cosαn + ϕn)) , (5)

where N is the number of sinusoids and αn, and ϕn are
phases.

Fig. 2 provides examples of demodulated signals under a
fading channel. From top to bottom, the magnitude ratios of
the received/original signals without propagation loss, and the
spectrograms of the original signals and those for the received
signals, are shown in the cases of fd = 2.0 and fd = 0.3. In
Fig. 2, we can observe sharp drops in the signal levels. If such
signal drops are present, the quality during listening degrades
significantly.

C. PESQ

While the level crossing rate (LCR) and average fading
duration (AFD) are typical measurements used to evaluate
fading [18], PESQ [11], STOI [19], and log-spectral distor-
tion(LSD) [20] are broadly used as objective quality measures
in the research field of spoken language processing [21].
Therefore, we employ PESQ as a measure of speech quality
of demodulated signals under fading communication channels.

PESQ is a standard quality assessment tool for speech
enhancement, but it has the drawback of lacking portability
because it requires two signal sources that can be aligned
in the temporal direction. In recent years, PESQ estimation
using neural networks has been studied to overcome this
drawback [22]. By contrast, an alternate method that employs
PESQ as an additive loss function has been proposed [23]. In
this study, we estimate the PESQ without reference using a
neural network and discuss the efficacy of PESQ estimation
for degraded speech under fading channel conditions.

TABLE I
PESQ ESTIMATION RESULTS

MSE corr.
w/o AGN 0.140 0.83
w/ AGN 0.076 0.98

True

Predicted

True

Predicted

w/o AGN w/ AGN

Fig. 4. Scatter Plots of True/Predicted PESQ Scores

D. Denoising Autoencoder

Our question is whether the original signal can be recon-
structed from the degraded signals in a fading communication
channel. A denoising autoencoder is generally used to restore
the degraded signal and improve its quality. To date, many
approaches have been proposed [3], [4], [5], [6], [7]. Many
of these approaches have attempted to recover the original
signals from those under noisy environments. However, there
are few studies focused on speech signals whose levels
fluctuate significantly. Therefore, we first attempt to recover
speech in the fading channel using denoising autoencoders
based on bidirectional long short-term memory (LSTM) layers.
In general, the denoising autoencoder minimizes the mean
squared error between the target signal and the predicted
signal; however, in this study, we attempt multi-task learning
(MTL) by incorporating PESQ into the objective function,
similar to [23].

III. EXPERIMENTAL SETUP

In this section, we briefly summarize the experimental
setups.

A. Corpus

In the experiments, we used JNAS [24], a Japanese speech
corpus, consisting of over 40 k utterances at a 16-kHz
sampling rate. We divided the corpus into two subsets for
training and validation so that there was no overlap between
speakers and utterances. We prepared a total of five pairs
of training/validation sets; the training sets consisted of 22
k utterances on average, and the validation sets consisted of
200 utterances. In the following experiments, we conducted
five-fold cross-validation to obtain the experimental results.
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Fig. 5. Examples of Reconstructed Speech Signals

B. Pseudo Data in Fading Communication Channel

We prepared a set of pseudo signals in the fading communi-
cation channel with additive Gaussian noise (AGN) according
to the GNU Radio [14],[17] channel simulator, or one of
the software-defined radio tools. When configuring the fading
channel, we set the maximum Doppler frequency, which
ranged randomly from 0.0 Hz to 2.0 Hz at a carrier frequency
of 594 kHz, and simulated eight sinusoids utilized in Eq.(5)
to generate the pseudo signals. In this simulated channel
configuration, the PESQ scores of pseudo signals ranged from
1.30 to 4.64 and averaged 3.78. Moreover, in the simulated
channel with AGN, the PESQ scores ranged from 1.03 to 4.59
and averaged 2.53, while the SNRs ranged from 6.75 dB to
56.0 dB. The PESQ scores of the original signals were set to
4.5.

C. Network Configurations

In the non-intrusive PESQ estimation, we employed the
Quality-Net (QN) proposed in [22]. From the results of the
preliminary experiments, we utilized 257-dimensional loga-
rithmic spectral features as inputs, while the original QN
employed non-logarithmic ones. The network, as well as the
original QN, is configured as a cascade of a bidirectional
LSTM with 100-dimensional cell units, a dense layer followed
by an exponential linear unit layer, and a global average
pooling layer for taking PESQ scores. In the original QN
training scheme, MTL consists of two loss functions: the
frame-averaged PESQ loss over the entire frame, and the
frame-wise loss. MTL was performed with fixed loss weights.
In this study, we set the weight of the frame-wise loss to 0.1.

In the speech enhancement experiment, we used the de-
noising autoencoder configuration shown in Fig. 3. To out-
put logarithmic spectral features, the network combines two
bidirectional LSTM layers: a fully connected layer followed
by hyperbolic tangent activations and a fully connected layer
(Baseline). Meanwhile, we connect the QN for PESQ esti-
mation to the output layer as an additional loss function, and
training is performed by multi-task learning, which is referred
to as MTL. The PESQ estimator parameters are fixed, and

TABLE II
EVALUATION RESULTS (W/O AGN)

MSE PESQ STOI LSD
Demodulated n/a 3.22 0.90 17.9

Baseline 0.0113 3.36 0.92 15.7
MTL 0.0107 3.38 0.92 15.6

TABLE III
EVALUATION RESULTS (W/ AGN)

MSE PESQ STOI LSD
Demodulated n/a 2.00 0.87 18.4

Baseline 0.0485 2.74 0.87 16.8
MTL 0.0487 2.75 0.87 16.8

the additional loss function is minimized so that the estimated
PESQ scores are converged to 4.5.

IV. EXPERIMENTAL RESULTS

A. PESQ Estimation

First, we describe the results of the PESQ estimation in
fading communication channels. For a fading channel and
channel with AGN, Table I lists the MSEs and the correlations
between true and predicted PESQ scores. As shown in Table
I, the model for the fading channel without AGN yielded a
larger MSE than that for the channel with AGN. As shown
in Fig. 2, multipath fading tends to significantly degrade the
signal in a local narrow range. Therefore, it would be difficult
for the QN to estimate the PESQ from such a local decline. By
contrast, because most real-world signals exist with additive
Gaussian noise, PESQ estimation does not matter in reality.

Fig. 4 shows scatter plots of the true PESQ against the
predicted one. These plots demonstrate that the QN (the non-
intrusive model), can estimate the PESQ for degraded speech
signals under fading channels. On the other hand, when the
true PESQ scores are low, the predicted scores tend to be
underestimated.
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B. Denoising Autoencoder Results

Tables II & III show measured results of demodulated
signals in both channels according to PESQ, STOI, and LSD.
All results are the average results obtained from five-fold
cross-validation sets, and the predicted logarithmic spectral
features were converted into time-domain signals using the
Griffin–Lim algorithm [25], [26].

In Table II, the Baseline autoencoder improved the average
PESQ score from 3.22 to 3.36 compared to the Demodulated
approach, while MTL achieved a PESQ score of 3.38, which
was a 0.6% improvement compared to the Baseline. PESQ
scores decreased for signals in the communication channel
with AGN. MTL achieved a slightly better score compared to
the Baseline and improved the PESQ by 0.4% compared to
the demodulated signals. MTL achieved small improvements
in PESQ scores against the Baseline. This is probably because
the decline of the signal levels due to fading occurs only in a
small portion of the signals.

Although in Table III, there are no improvements in STOI,
this type of measure is not affected by a small portion of
extreme signal distortion, as seen in fading, since STOI is
calculated from the average of local distortions[19].

Fig. 5 shows a sample of the demodulated signal and the
reconstructed signal after applying the denoising autoencoder.
The reconstructed signal was adjusted in gain to the original
gain and then recovered from the dip caused by a short
temporal span in level-drop.

V. CONCLUSION

In this paper, we investigated a speech enhancement method
for reconstructing demodulated speech signals under a mul-
tipath fading channel typically found in radio broadcasting.
We simulated two communication channels, one with fading
only and the other with additive Gaussian noise and generated
pseudo data sets. Experimental results indicate that the neural
networks based on bi-directional LSTMs improved the PESQ
value in the fading channel with Gaussian noise from 2.00
to 2.75. Encouraged by these promising results, we would
like to design a corpus in future work that includes speech
signals under fading channels in the real world and evaluate the
results based on subjective assessment methods. In a practical
situation, the subjective assessment is employed as a measure
of quality. Thus, it is necessary to aim for a system using the
subjective assessment instead of PESQ.
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