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Abstract—Singing voice conversion aims to convert singer’s
voice from source to target without changing singing content.
Parallel training data is typically required for the training of
singing voice conversion system, that is however not practical in
real-life applications. Recent encoder-decoder structures, such as
variational autoencoding Wasserstein generative adversarial net-
work (VAW-GAN), provide an effective way to learn a mapping
through non-parallel training data. In this paper, we propose a
singing voice conversion framework that is based on VAW-GAN.
We train an encoder to disentangle singer identity and singing
prosody (F0 contour) from phonetic content. By conditioning on
singer identity and F0, the decoder generates output spectral
features with unseen target singer identity, and improves F0 ren-
dering. Experimental results show that the proposed framework
achieves better performance than the baseline frameworks.
Index Terms: singing voice conversion, VAW-GAN, F0 con-
ditioning

I. INTRODUCTION

Singing voice conversion (SVC) is a voice conversion (VC)
technique that converts source singer’s voice to sound like
target singer’s voice, while preserving the singing content
[1]. With singing voice conversion, we can make everyone
sing like a professional, overcoming the limitation of physical
constraints, controlling the voice timbre freely, and expressing
the emotions in variable ways [2], [3].

Singing voice conversion shares many similarities with
speech voice conversion [4]–[6]. They both aim to change the
vocal identity. However, they are also different in many ways.
For example, in speech voice conversion, speech prosody is
considered to contain the information of speaker character-
istics [7]–[10]. In contrast, in singing voice conversion, we
assume that source singers are always singing on the key,
which means the singing style is only determined by the sheet
music, thus we consider singing style as a singer-independent
feature. Therefore, only singer-dependent traits, such as vocal
timbre, need to be converted [11]–[13].

Early studies attempted to convert singing voice through
spectral modeling. Many statistical methods, such as Gaussian
mixture model (GMM)-based many-to-many eigenvoice con-
version (EV-GMM) [14], direct waveform modification based
on spectrum differential (DIFFSVC) [15], and DIFFSVC with
global variance [16] have been proposed for SVC. With the
advent of deep learning, deep neural network (DNN) [17] and
generative adversarial network (GAN) [13], [18] among others
have shown improved quality and naturalness.

Codes & Singing Samples: https://kunzhou9646.github.io/singvaw-gan/
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Fig. 1. A singing voice conversion system is trained on singing voice data
recorded by the source and target singers. At run-time, the system takes
singing voice of the source singer as input, and converts it to that of the
target singer.

However, previous studies on singing voice conversion
mostly require of parallel training data between the source
and target singer. In practice, collecting such parallel data
is expensive and time-consuming, that motivated non-parallel
SVC methods, such as deep bidirectional long short term
memory (DBLSTM) based recurrent neural network (RNN)
[19], [20], Wasserstein generative adversarial network (WD-
GAN) [21], and StarGAN [22] for SVC. Recently, encoder-
decoder based networks [23], such as variational autoencoder
(VAE) [24], variational autoencoding Wasserstein generative
adversarial network (VAW-GAN) [25], auxiliary classifier vari-
ational autoencoder (ACVAE) [26], [27] and cycle-consistent
autoencoder (CycleVAE) [28], [29] have been successfully ap-
plied into various tasks, such as cross-lingual voice conversion
[30] and emotional voice conversion [31].

Autoencoder is effective for disentanglement of mixed in-
formation [24], [25], [32]. If we are able to disentangle vocal
timbre of the singer, that we call singer identity in this paper,
from phonetic content and singing prosody (F0 contour), we
can simply replace the singer identity and F0 contour during
signal reconstruction for singing voice conversion. We adopt
VAW-GAN in this paper for two reasons. First, autoencoder
doesn’t require parallel training data during encoding and
decoding; Second, the encoder-decoder architecture allows
for effective control of singer identity and singing prosody,
that makes many-to-many conversion easier than other non-
parallel generative models, such as cycle-consistent generative
adversarial network (CycleGAN) [6], [30], [33], [34].

It is known that F0 and spectral features are inherently
correlated [35], [36]. In autoencoder-based VC, the latent code
from encoder contains F0 information from the source, that
adversely affects the output. Recent studies have also shown
that disentangling F0 from latent code improves the perfor-
mance of speech voice conversion [37], [38] and emotion
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conversion [31], that motivates the studies in this paper. We
are motivated to study disentanglement of both singer identity,
and F0 information from singing content. This can be achieved
by providing both singer identity and F0, in addition to latent
code, to the decoder during training. In this way, we aim to
obtain a latent code that is singer and F0 independent. At
run-time, we add both singer identity and F0 as inputs to the
decoder to control the signal reconstruction.

The main contributions of this paper include: 1) we propose
a framework for singing voice conversion with non-parallel
training data; 2) we achieve high quality converted singing
voice; 3) we eliminate the need for parallel training data,
time alignment procedures and other external modules, such
as automatic speech recognition (ASR); 4) we show the
effectiveness of the F0 conditioning mechanism for SVC.
To our best knowledge, this is the first attempt to use F0
conditioning for non-parallel singing voice conversion.

This paper is organized as follows: In Section II, we recap
the study of VAW-GAN for speech synthesis. In Section III,
we introduce our proposed singing voice conversion frame-
work. In Section IV, the experiments and results are reported.
Conclusions are given in Section V.

II. RELATED WORK: VAW-GAN IN SPEECH SYNTHESIS

Recently, encoder-decoder networks such as variational
Wasserstein generative adversarial network (VAW-GAN) [25]
have drawn much attention because of their generating ability
and controllability. VAW-GAN makes it possible to train a
model without parallel data or any other time alignment
procedures through an encoder-decoder structure.

The main idea of VAW-GAN is based on the probabilistic
graphical model (PGM). Given spectral features xs from
source speaker and xt from target speaker, the PGM tries
to explain the observation x using two latent variables: the
speaker representation vector y and the phonetic content vector
z. It is noted that y is determined solely by the speaker
identity and z is a speaker-independent variable. According to
the PGM, the voice conversion function f(·) can be divided
into two stages: 1) a speaker-independent encoder Eφ with
parameter set φ infers a latent vector from the source spectral
features z = Eφ(xs), and 2) a speaker-dependent decoder Gθ
with parameter set θ reconstructs the input with the latent code
z and a target speaker representation vector yt. Therefore, the
task of voice conversion is then reformulated as:

xt ≈ f(xs) = Gθ(Eφ(xs),yt) (1)

During training, the frames that belong to the same phoneme
class hinge on a similar z. With the latent content vector z, the
decoder can generate voice of a specific speaker by varying
the speaker representation vector y.

Different from variational encoding networks, generative
adversarial network (GAN) produces sharper spectra since
it optimizes a loss function between two distributions in a
more direct fashion [25]. In order to achieve better conversion
performance, VAW-GAN incorporates the discriminator from

GAN models and assigns VAE’s decoder as GAN’s gener-
ator. In the case of voice conversion, the Jensen-Shannon
divergence [39] in the GAN objective is renovated with a
Wasserstein objective:

Jwgan = Ex∼p∗t [Dψ(x)]− Ez∼qφ(z|x)[Dψ(Gθ(z),yt)] (2)

where p∗t is the distribution of xt, qφ(z|x) is the inference
model, and Dψ is the discriminator with parameter set ψ.

Therefore, the final objective loss function of VAW-GAN is
given as follow:

Jvawgan =−DKL(qφ(z|x)‖pθ(z))
+ Ez∼qφ(z|x)[logpθ(x|z,y)]
+ αJwgan (3)

where α is a coefficient which emphasizes Jwgan, DKL is
the Kullback-Leibler divergence, pθ(z) is the prior distribution
model of z, and pθ(x|z,y) is the synthesis model. Through
the adversarial learning, the decoder minimizes the loss, while
the discriminator maximizes it, until an optimal pseudo pair
is found through this min-max game. This objective is shared
across all three main components in VAW-GAN: the encoder,
the decoder and the discriminator.

VAW-GAN has been successfully applied in the field of
speech synthesis, such as voice conversion [25], [30] and emo-
tion conversion [31]. We expect that the way it characterizes
speaker identity also applies to singer identity. In this paper, we
propose a VAW-GAN framework for singing voice conversion,
which will be the focus of Section III.

III. VAW-GAN FOR SINGING VOICE CONVERSION

In this section, we propose the use of VAW-GAN for
disentanglement of singer identity and F0 information from
the phonetic content. The proposed VAW-GAN includes a
singer-independent encoder, that generates latent code z, and
a decoder that takes a triplet input, namely latent code, singer
identity and F0.

A. Training Phase
The training phase is illustrated in Fig. 2. We first use

WORLD vocoder [36] to extract spectral features (SP) and F0
from the singing waveform. The encoder takes input frames
from multiple singers, and generate a singer-independent latent
code z. We assume that the latent code z only contains the
information of phonetic content.

We use a one-hot vector singer ID and source F0 as the
input to the decoder, in addition to latent code. In this way,
the encoder learns to disentangle singer ID and F0 from the
latent code z after being exposed to singing data of multiple
singers. By conditioning on singer ID and F0, the decoder, as
formulated in Eq. (1), can be re-written as follows,

x ≈ f(x, F0) = Gθ(Eφ(x),y, F0) (4)

The decoder learns to reconstruct the spectral features and
the discriminator tries to distinguish whether the spectral
features are from real singing voice or not. Through this
min-max game, the encoder, decoder and discriminator are
encouraged to find an optimal pseudo pairs during the training.
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Fig. 2. The training phase of the proposed VAW-GAN (SID+F0) singing voice conversion framework. The encoder learns to disentangle singer identity and
fundamental frequency (F0) from the phonetic content. Blue boxes are involved in the training.
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Fig. 3. The run-time conversion phase of the proposed VAW-GAN (SID+F0) singing voice conversion framework. The decoder is conditioned on singer identity
and fundamental frequency (F0) to generate spectral features for unseen target singer, and improve F0 rendering. Red boxes have been trained during the
training phase.

B. Run-time Conversion

The conversion phase is illustrated in Fig. 3. We first extract
spectral features and F0 from the source singing waveform
using WORLD vocoder. The spectral features are then encoded
into a latent code through the encoder and F0 is converted by
logarithm Gaussian (LG)-based linear transformation [24].

At run-time conversion, the decoder is conditioned on the
converted F0 features F̂0. The converted spectral features x̂t
are given as:

x̂t = f(xs, F̂0) = Gθ(Eφ(xs),yt, F̂0) (5)

where yt is the designated singer ID.
The converted spectral features are then reconstructed by

the decoder together with the converted F0 and the designated
singer ID. Finally, we use WORLD vocoder to synthesis the
converted singing waveform.

IV. EXPERIMENTS

We conduct both objective and subjective experiments to
assess the performance of the proposed VAW-GAN for singing
voice conversion. We use NUS Sung and Spoken Lyrics
Corpus (NUS-48E corpus) [40], which consists of the sung and
spoken lyrics of 48 English songs by 12 professional singers.
We choose 2 male singers and 1 female singer for all the
experiments. For each singer, 6 songs are used for training
and evaluation.

We construct two systems: a) VAW-GAN with the decoder
conditioning on singer ID (SID) and F0 (as illustrated in Figure
3) to convert the spectrum between different singers, denoted
as VAW-GAN (SID+F0); b) VAW-GAN with the decoder
conditioning only on singer ID, denoted as VAW-GAN (SID),
that is similar to the VAW-GAN in [25] for speech voice
conversion.

We use VAW-GAN (SID) as the reference baseline to show
the effect of the proposed VAW-GAN (SID+F0), and report

the performance in both objective and subjective evaluations.
It is noted that both frameworks are trained with non-parallel
singing voice data.

A. Experimental Setup

The singing voice data is down-sampled at 16kHz. We first
use WORLD vocoder [36] to extract 513-dimensional spectral
features (SP), F0, and aperiodicity (AP). The frame length is
25 ms with a frame shift of 5 ms. F0 is re-scaled to the range of
[−1, 1]. The input SP of each frame is normalized to unit-sum.
The normalization factor, known as the energy, is taken out as
an independent feature. We use the log energy-normalized SP
for VAW-GAN training.

The model architecture of our proposed VAW-GAN
(SID+F0) framework is given in Table I. The encoder, the
decoder, and the discriminator of both frameworks are all 1D
convolutional neural networks (CNN), of which each layer
is followed by a fully connected layer. The latent space is
128-dimensional and is assumed to have a standard normal
distribution. The dimension of the speaker representation is
set to be 10. For both frameworks, during the training phase,
we first train the encoder-decoder pair for 15 epochs, and then
train the whole VAW-GAN for 45 epochs. The framework is
trained using RMSProp with a learning rate of 0.0001. During
the conversion phase, SP and F0 are converted on a frame-by-
frame basis, while AP and the energy remain unmodified.

B. Objective Evaluation

We use Mel-cepstral distortion (MCD) [2], [41] to measure
the distortion between the converted and target Mel-cepstra,
that is given as follows:

MCD[dB] =
10

T ln 10

T∑
i=1

√√√√2
D∑
d=1

(mcti,d −mcci,d)2 (6)
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TABLE I
THE MODEL ARCHITECTURE OF THE ENCODER, DECODER AND DISCRIMINATOR OF OUR PROPOSED FRAMEWORK VAW-GAN (SID+F0).

# of Layers Kernel Size Stride Output Channel
Encoder 5 {7, 7, 7, 7, 7} {3, 3, 3, 3, 3} {16, 32, 64, 128, 256}
Decoder 4 {9, 7, 7, 1025} {3, 3, 3, 1} {32, 16, 8, 1}

Discriminator 3 {7, 7, 115} {3, 3, 3} {16, 32, 64}

TABLE II
A COMPARISON OF THE MCD RESULTS BETWEEN VAW-GAN (SID+F0),
VAW-GAN (SID) FOR MALE-TO-MALE AND MALE-TO-FEMALE SINGING

VOICE CONVERSION.

Framework MCD [dB]
male → male male → female

Zero effort 10.05 13.43
VAW-GAN (SID) 7.20 7.39

VAW-GAN (SID+F0) 5.51 6.57

where mcci,d and mcti,d represent the dth coefficient of the
converted and target MCEPs sequences at the ith frame,
respectively. D is the dimension of MCEP features and T
represents the total number of frames. In this paper, we extract
24-dimensional MCEPs at each frame, thus D is 24. We
note that a lower value of MCD indicates a smaller spectrum
distortion and a better conversion performance.

We report MCD results of our proposed framework VAW-
GAN (SID+F0) and the baseline framework VAW-GAN (SID).
Zero effort represents the cases where we directly compare
the singing voice of source and target singers without any
conversion. As reported in Table II, we observe that our
proposed framework VAW-GAN (SID+F0) outperforms the
baseline framework VAW-GAN (SID) for both male-to-male
and male-to-female (5.51 vs. 6.20 and 6.57 vs. 7.39), which we
believe is remarkable. The results indicate that our proposed
VAW-GAN (SID+F0) with F0 conditioning achieves a better
performance of spectrum conversion than the baseline frame-
work VAW-GAN (SID) without any condition in both inter-
gender and intra-gender SVC.

2.90 

3.03 

2.47 

2.11 

1 2 3 4 5

Inter-gender

Intra-gender

Mean Opinion Score (MOS)

VAW-GAN (SID)

VAW-GAN (SID+F0)

Fig. 4. MOS results with 95 % confidence interval between the proposed
VAW-GAN (SID+F0) and VAW-GAN (SID) baseline.
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VAW-GAN (SID)
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Fig. 5. XAB preference test results with 95 % confidence interval between
the proposed VAW-GAN (SID+F0) and VAW-GAN (SID) baseline.

C. Subjective Evaluation

We further conduct subjective evaluation to assess the
performance of the proposed VAW-GAN for singing voice
conversion in terms of voice quality and singer similarity. 20
subjects participate in all the listening tests, and each of them
listens to 120 converted singing voice samples in total.

We conduct mean opinion score (MOS) [42], [43] to assess
the voice quality of the converted singing voices. Listeners
are asked to score the quality of the converted singing voice
on a five-point scale (5: excellent, 4: good, 3: fair, 2: poor,
1: bad). As shown in Fig. 4, our proposed framework VAW-
GAN (SID+F0) outperforms the baseline framework VAW-
GAN (SID) in terms of voice quality by achieving higher
MOS values of 3.03 ± 0.28 for male-to-male singing voice
conversion and 2.90 ± 0.31 for male-to-female singing voice
conversion. The results suggest that conditioning the decoder
on F0 improves voice quality remarkably, which is consistent
with the observation in objective evaluation.

We also conduct XAB preference test [44], [45] in terms
of the singer similarity. The subjects are asked to listen to
the reference target singing samples and the converted singing
samples of the VAW-GAN (SID) baseline, and the proposed
VAW-GAN (SID+F0), and choose the one which sounds closer
to the target in terms of singer similarity. As shown in Fig. 5,
our proposed framework VAW-GAN (SID+F0) outperforms the
VAW-GAN (SID) baseline in terms of singer similarity (84.7
% vs. 13 % for male-to-male SVC and 56.7 % vs. 31 % for
male-to-female SVC). The results prove the effectiveness of
our proposed framework in terms of singer identity conversion.

V. CONCLUSION

In this paper, we propose a parallel-data-free singing voice
conversion framework with VAW-GAN. We first propose to
conduct singer-independent training with a encoding-decoding
process. We also propose to condition the decoder on F0
to improve the singing voice conversion performance. We
eliminate the need for parallel training data or other time-
alignment procedures, and achieve high performance of con-
verted singing voices. Experimental results show the efficiency
of our proposed SVC framework on both intra-gender and
inter-gender singing voice conversion.
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